1. Co-coating effect of GdPO4 and carbon on LiFePO4 cathode surface for lithium ion batteries
- Author
-
HuiXing Huang, Yong Li, MMeng Liang, Juan Wang, Mi Zhang, and Jia Wang
- Subjects
Materials science ,General Chemical Engineering ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,Cathode ,0104 chemical sciences ,law.invention ,Ion ,chemistry ,Coating ,Chemical engineering ,Mechanics of Materials ,law ,engineering ,Lithium ,Particle size ,0210 nano-technology ,Carbon - Abstract
The electronic conductivity enhanced has been extensively studied and reported in lithium iron phosph-ate (LiFePO4). However, only few existing literatures are available for researchers to enhance simultaneously the ion and electronic conductivity of LiFePO4. Herein, we disclose that the LiFePO4 is co-coated with novel GdPO4 and Carbon via a hydrothermal-assisted solid-phase method, contributing to particle size and dispersibility. What surprising is that the ionic and electronic conductivity of the material is significantly enhanced, and the interfacial side reaction is effectively inhibited between the materials and the electrolytes. The diverse proportions of the mixed coating (LiFePO4/C&xGdPO4 (x = 0, 1 wt%, 2 wt%, 3 wt%, 4 wt%)) are synthesized compared with bare LiFePO4. The experimental results suggest that LiFePO4/C&0.03GdPO4 exhibits the most excellent electrochemical performance. There is discharge capacity of 158, 148.8, 141.6, 134.9, 121.8, 104.9, and 86.7mAh/g at 0.1, 0.2, 0.5, 1, 2, 5, and 10 C rates, respectively.
- Published
- 2019