1. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording
- Author
-
Bianxiao Cui, Thomas L. Li, Zhenan Bao, Hsin-Ya Lou, Yuxin Liu, Jeffrey B.-H. Tok, and Allister F. McGuire
- Subjects
Materials science ,Fabrication ,Cell Culture Techniques ,Action Potentials ,Modulus ,02 engineering and technology ,Signal-To-Noise Ratio ,Iridium ,010402 general chemistry ,01 natural sciences ,Signal ,Mice ,Elastic Modulus ,Monolayer ,Electrode array ,Animals ,Myocytes, Cardiac ,Electrical conductor ,Neurons ,Multidisciplinary ,business.industry ,Electric Conductivity ,technology, industry, and agriculture ,Hydrogels ,Equipment Design ,021001 nanoscience & nanotechnology ,Electric Stimulation ,Electrophysiological Phenomena ,0104 chemical sciences ,Electrophysiology ,Physical Sciences ,Electrode ,Optoelectronics ,0210 nano-technology ,business ,Microelectrodes - Abstract
Multielectrode arrays (MEAs) are essential tools in neural and cardiac research as they provide a means for noninvasive, multiplexed recording of extracellular field potentials with high temporal resolution. To date, the mechanical properties of the electrode material, e.g., its Young's modulus, have not been taken into consideration in most MEA designs leaving hard materials as the default choice due to their established fabrication processes. However, the cell-electrode interface is known to significantly affect some aspects of the cell's behavior. In this paper, we describe the fabrication of a soft 3D micropillar electrode array. Using this array, we proceed to successfully record action potentials from monolayer cell cultures. Specifically, our conductive hydrogel micropillar electrode showed improved signal amplitude and signal-to-noise ratio, compared with conventional hard iridium oxide micropillar electrodes of the same diameter. Taken together, our fabricated soft micropillar electrode array will provide a tissue-like Young's modulus and thus a relevant mechanical microenvironment to fundamental cardiac and neural studies.
- Published
- 2018
- Full Text
- View/download PDF