1. Atomic-scale insights into electro-steric substitutional chemistry of cerium oxide
- Author
-
Ivano E. Castelli, Haiwu Zhang, Simone Santucci, Nini Pryds, Simone Sanna, and Vincenzo Esposito
- Subjects
Steric effects ,Cerium oxide ,Materials science ,Diffusion ,Substituent ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,Ionic bonding ,02 engineering and technology ,010402 general chemistry ,Thermal diffusivity ,01 natural sciences ,Oxygen ,Divalent ,chemistry.chemical_compound ,Physical and Theoretical Chemistry ,Settore FIS/01 ,chemistry.chemical_classification ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Physical chemistry ,0210 nano-technology - Abstract
Cerium oxide (ceria, CeO2) is one of the most promising mixed ionic and electronic conducting materials. Previous atomistic analysis has widely covered the effects of substitution on oxygen vacancy migration. However, an in-depth analysis of the role of cation substitution beyond trivalent cations has rarely been explored. Here, we investigate soluble monovalent (Li+, Na+, K+, Rb+), divalent (Fe2+, Co2+, Mn2+, Mg2+, Ni2+, Zn2+, Cd2+, Ca2+, Sr2+, Ba2+), trivalent (Al3+, Fe3+, Sc3+, In3+, Lu3+, Yb3+, Y3+, Er3+, Gd3+, Eu3+, Nd3+, Pr3+, La3+) and tetravalent (Si4+, Ge4+, Ti4+, Sn4+, Hf4+, Zr4+) cation substituents. By combining classical simulations and quantum mechanical calculations, we provide an insight into defect association energies between substituent cations and oxygen vacancies as well as their effects on the diffusion mechanisms. Our simulations indicate that oxygen ionic diffusivity of subvalent cation-substituted systems follows the order Gd3+Ca2+Na+. With the same charge, a larger size mismatch with the Ce4+ cation yields a lower oxygen ionic diffusivity, i.e., Na+K+, Ca2+Ni2+, Gd3+Al3+. Based on these trends, we identify species that could tune the oxygen ionic diffusivity: we estimate that the optimum oxygen vacancy concentration for achieving fast oxygen ionic transport is ≈2.5% for GdxCe1-xO2-x/2, CaxCe1-xO2-x and NaxCe1-xO2-3x/2 at 800 K. Remarkably, such a concentration is not constant and shifts gradually to higher values as the temperature is increased. We find that co-substitutions can enhance the impact of the single substitutions beyond that expected by their simple addition. Furthermore, we identify preferential oxygen ion migration pathways, which illustrate the electro-steric effects of substituent cations in determining the energy barrier of oxygen ion migration. Such fundamental insights into the factors that govern the oxygen diffusion coefficient and migration energy would enable design criteria to be defined for tuning the ionic properties of the material, e.g., by co-substitutions.
- Published
- 2020