1. Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction
- Author
-
Jonathan Barés, Quentin Hanniet, Moustapha Boussmen, Emerson Coy, Vincent Huon, Igor Iatsunskyi, Damien Voiry, Chrystelle Salameh, Christel Gervais, Mikhael Bechelany, Philippe Miele, Institut Européen des membranes (IEM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Expérimentation & Calcul Scientifique (COMPEX), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ThermoMécanique des Matériaux (ThM2), Adam Mickiewicz University in Poznań (UAM), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (LCMCP-SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), CNRS Cellule Energie exploratory project 'CeraMicroPac' and Axe Transverse Membranes du Futur project 'CeraMesoMem', CanBioSe (Grant No. 778157) and the National Science Center of Poland (UMO-2019/35 /B/ST5/00248), The French Région Ile de France—SESAME program for support for the NMR measurements (700 MHz NMR spectrometer), Doctoral School 'Ecole doctorale des Sciences Chimiques Balard, ED 459', European Project: 804320 ,2D-4-CO2, and Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
- Subjects
Ceramics ,Materials science ,Hydrogen Evolution Reaction ,Science ,Oxide ,02 engineering and technology ,Overpotential ,010402 general chemistry ,Platinum nanoparticles ,01 natural sciences ,7. Clean energy ,Article ,Catalysis ,law.invention ,chemistry.chemical_compound ,law ,Ceramic ,renewable energy sources ,Composites ,Hydrogen production ,Tafel equation ,Multidisciplinary ,Graphene ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,Medicine ,0210 nano-technology ,Inorganic chemistry ,energy - Abstract
Hydrogen Evolution Reaction (HER) is an attractive technology for chemical conversion of energy. Replacement of platinum with inexpensive and stable electrocatalysts remains a major bottleneck hampering large-scale hydrogen production by using clean and renewable energy sources. Here, we report electrocatalytically active and ultra-stable Polymer-Derived Ceramics towards HER. We successfully prepared ultrathin silicon and carbon (Si–C) based ceramic systems supported on electrically conducting 2D reduced graphene oxide (rGO) nanosheets with promising HER activity by varying the nature and the composition of the ceramic with the inclusion of nitrogen, boron and oxygen. Our results suggest that oxygen-enriched Si-B-C-N/rGO composites (O-SiBCN/rGO) display the strongest catalytic activity leading to an onset potential and a Tafel slope of − 340 mV and ~ 120 mV dec−1 respectively. O-SiBCN/rGO electrodes display stability over 170 h with minimal increase of 14% of the overpotential compared to ~ 1700% for commercial platinum nanoparticles. Our study provides new insights on the performance of ceramics as affordable and robust HER catalysts calling for further exploration of the electrocatalytic activity of such unconventional materials.
- Published
- 2020
- Full Text
- View/download PDF