1. Liquid-Crystalline Suspensions of Photosensitive Paramagnetic CeF3 Nanodiscs
- Author
-
Patrick Davidson, David Amans, Frédéric Chaput, Maelle Monteil, Mateusz Odziomek, Marc Lecouvey, Ivan Dozov, Anne-Charlotte Faure, F. Bouquet, Anne-Laure Bulin, Frédéric Lerouge, Christophe Dujardin, Stephane Parola, Laboratoire de Chimie - UMR5182 (LC), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Luminescence (LUMINESCENCE), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Institut de Chimie du CNRS (INC), Université de Lyon-Université de Lyon, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Paramagnetism ,liquid crystals ,Liquid crystal ,Electrochemistry ,[CHIM]Chemical Sciences ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy ,[PHYS]Physics [physics] ,Cerium fluoride ,Liquid crystalline ,crystalline nanodiscs ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Chemical engineering ,photosensitive materials ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF 3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (∼6), a liquidcrystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) fieldinduced orientation of the nanodiscs (Kerr and Cotton−Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF 3. Therefore, these CeF 3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.
- Published
- 2019