1. Hybrid intelligent deep kernel incremental extreme learning machine based on differential evolution and multiple population grey wolf optimization methods
- Author
-
Xiao Lin Zhu, Zong Shun Qu, Qin Wan, Feng Jiao Guo, and Di Wu
- Subjects
0209 industrial biotechnology ,General Computer Science ,Computer science ,lcsh:Automation ,Population ,lcsh:Control engineering systems. Automatic machinery (General) ,02 engineering and technology ,Extreme learning machine (ELM) ,Machine learning ,computer.software_genre ,lcsh:TJ212-225 ,020901 industrial engineering & automation ,0202 electrical engineering, electronic engineering, information engineering ,lcsh:T59.5 ,education ,kernel incremental extreme learning machine (KIELM) ,differential evolution (DE) ,multiple population grey wolf optimization methods (MPGWO ,hybrid intelligence (HI) ,Extreme learning machine ,education.field_of_study ,business.industry ,020208 electrical & electronic engineering ,Control and Systems Engineering ,Kernel (statistics) ,Differential evolution ,Optimization methods ,Artificial intelligence ,business ,computer ,multiple population grey wolf optimization methods (MPGWO) - Abstract
Focussing on the problem that redundant nodes in the kernel incremental extreme learning machine (KI-ELM) which leads to ineffective iteration increase and reduce the learning efficiency, a novel improved hybrid intelligent deep kernel incremental extreme learning machine (HI-DKIELM) based on a hybrid intelligent algorithms and kernel incremental extreme learning machine is proposed. At first, hybrid intelligent algorithms are proposed based on differential evolution (DE) and multiple population grey wolf optimization (MPGWO) methods which used to optimize the hidden layer neuron parameters and then to determine the effective hidden layer neurons number. The learning efficiency of the algorithm is improved by reducing the network complexity. Then, we bring in the deep network structure to the kernel incremental extreme learning machine to extract the original input data layer by layer gradually. The experiment results show that the HI-DKIELM methods proposed in this paper with more compact network structure have higher prediction accuracy and better ability of generation compared with other ELM methods.
- Published
- 2019