1. Alternate Endings: Improving Prosody for Incremental Neural TTS with Predicted Future Text Input
- Author
-
Laurent Girin, Laurent Besacier, Brooke Stephenson, Thomas Hueber, Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP), Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), GIPSA - Cognitive Robotics, Interactive Systems, & Speech Processing (GIPSA-CRISSP), GIPSA Pôle Parole et Cognition (GIPSA-PPC), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), and ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
- Subjects
FOS: Computer and information sciences ,Incremental text-to-speech ,Computer science ,Speech recognition ,Context (language use) ,neural language models ,02 engineering and technology ,Measure (mathematics) ,030507 speech-language pathology & audiology ,03 medical and health sciences ,Naturalness ,prosody ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Audio and Speech Processing (eess.AS) ,0202 electrical engineering, electronic engineering, information engineering ,FOS: Electrical engineering, electronic engineering, information engineering ,[INFO]Computer Science [cs] ,Prosody ,Computer Science - Computation and Language ,020206 networking & telecommunications ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Duration (music) ,Language model ,0305 other medical science ,Computation and Language (cs.CL) ,Word (computer architecture) ,Energy (signal processing) ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
The prosody of a spoken word is determined by its surrounding context. In incremental text-to-speech synthesis, where the synthesizer produces an output before it has access to the complete input, the full context is often unknown which can result in a loss of naturalness in the synthesized speech. In this paper, we investigate whether the use of predicted future text can attenuate this loss. We compare several test conditions of next future word: (a) unknown (zero-word), (b) language model predicted, (c) randomly predicted and (d) ground-truth. We measure the prosodic features (pitch, energy and duration) and find that predicted text provides significant improvements over a zero-word lookahead, but only slight gains over random-word lookahead. We confirm these results with a perceptive test., Comment: 4 pages
- Published
- 2021
- Full Text
- View/download PDF