1. Sparse weakly supervised models for object localization in road environment
- Author
-
Siniša Šegvić, Valentina Zadrija, Jakob Verbeek, Josip Krapac, Faculty of Electrical Engineering and Computing [Zagreb] (FER), University of Zagreb, Apprentissage de modèles à partir de données massives (Thoth ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-16-CE23-0006,Deep_in_France,Réseaux de neurones profonds pour l'apprentissage(2016), and ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
- Subjects
Normalization (statistics) ,Computer science ,Scale-invariant feature transform ,02 engineering and technology ,Weak supervision ,Overfitting ,Image (mathematics) ,Object localization ,Sparse models ,Convolutional features ,0202 electrical engineering, electronic engineering, information engineering ,Representation (mathematics) ,Geographic information system (GIS) ,Fisher Vectors ,business.industry ,Perspective (graphical) ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Object localization Weak supervision Fisher vectors Sparse models Convolutional features Geographic information system (GIS) OpenStreetMap ,020207 software engineering ,Percentage point ,Pattern recognition ,OpenStreetMap ,Signal Processing ,Metric (mathematics) ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Artificial intelligence ,business ,Software - Abstract
We propose a novel weakly supervised localization method based on Fisher-embedding of low-level features (CNN, SIFT), and model sparsity at the component level. Fisher-embedding provides an interesting alternative to raw low-level features, since it allows fast and accurate scoring of image subwindows with a model trained on entire images. Model sparsity reduces overfitting and enables fast evaluation. We also propose two new techniques for improving performance when our method is combined with nonlinear normalizations of the aggregated Fisher representation of the image. These techniques are (i) intra-component metric normalization and (ii) first-order approximation to the score of a normalized image representation. We evaluate our weakly supervised localization method on real traffic scenes acquired from driver’s perspective. The method dramatically improves the localization AP over the dense non-normalized Fisher vector baseline (16 percentage points for zebra crossings, 21 percentage points for traffic signs) and leads to a huge gain in execution speed (91 × for zebra crossings, 74 × for traffic signs).
- Published
- 2018