1. Minimum density of identifying codes of king grids
- Author
-
Rennan Dantas, Frédéric Havet, Rudini Menezes Sampaio, Parallelism, Graphs and Optimization Research Group (ParGO), Universidade Federal do Ceará = Federal University of Ceará (UFC), Combinatorics, Optimization and Algorithms for Telecommunications (COATI), COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
Discrete mathematics ,Applied Mathematics ,Discharging method ,Neighbourhood (graph theory) ,identifying codes ,020206 networking & telecommunications ,0102 computer and information sciences ,02 engineering and technology ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,Graph ,Theoretical Computer Science ,Combinatorics ,king grids ,Discharging Method ,010201 computation theory & mathematics ,Identifying code ,0202 electrical engineering, electronic engineering, information engineering ,Discrete Mathematics and Combinatorics ,King grid ,Minimum density ,Mathematics - Abstract
A set C ⊆ V ( G ) is an identifying code in a graph G if for all v ∈ V ( G ) , C [ v ] ≠ ∅ , and for all distinct u , v ∈ V ( G ) , C [ u ] ≠ C [ v ] , where C [ v ] = N [ v ] ∩ C and N [ v ] denotes the closed neighbourhood of v in G. The minimum density of an identifying code in G is denoted by d ⁎ ( G ) . In this paper, we study the density of king grids which are strong product of two paths. We show that for every king grid G , d ⁎ ( G ) ≥ 2 / 9 . In addition, we show this bound is attained only for king grids which are strong products of two infinite paths. Given k ≥ 3 , we denote by K k the (infinite) king strip with k rows. We prove that d ⁎ ( K 3 ) = 1 / 3 , d ⁎ ( K 4 ) = 5 / 16 , d ⁎ ( K 5 ) = 4 / 15 and d ⁎ ( K 6 ) = 5 / 18 . We also prove that 2 9 + 8 81 k ≤ d ⁎ ( K k ) ≤ 2 9 + 4 9 k for every k ≥ 7 .
- Published
- 2017
- Full Text
- View/download PDF