1. Zoetrope genetic programming for regression
- Author
-
Aurélie Boisbunon, Jonathan Daeden, Carlo Fanara, Marc Schoenauer, Ingrid Grenet, Alexis Vighi, MyDataModels, TAckling the Underspecified (TAU), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ACM, and CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Theoretical computer science ,Computer Science - Artificial Intelligence ,Computer science ,Crossover ,Machine Learning (stat.ML) ,Genetic programming ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Machine Learning (cs.LG) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Set (abstract data type) ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Statistics - Machine Learning ,0202 electrical engineering, electronic engineering, information engineering ,Neural and Evolutionary Computing (cs.NE) ,Representation (mathematics) ,Selection (genetic algorithm) ,Training set ,Computer Science - Neural and Evolutionary Computing ,Regression ,Artificial Intelligence (cs.AI) ,010201 computation theory & mathematics ,020201 artificial intelligence & image processing ,Symbolic regression - Abstract
International audience; The Zoetrope Genetic Programming (ZGP) algorithm is based on an original representation for mathematical expressions, targeting evolutionary symbolic regression. The zoetropic representation uses repeated fusion operations between partial expressions, starting from the terminal set. Repeated fusions within an individual gradually generate more complex expressions, ending up in what can be viewed as new features. These features are then linearly combined to best fit the training data. ZGP individuals then undergo specific crossover and mutation operators, and selection takes place between parents and offspring. ZGP is validated using a large number of public domain regression datasets, and compared to other symbolic regression algorithms, as well as to traditional machine learning algorithms. ZGP reaches state-of-theart performance with respect to both types of algorithms, and demonstrates a low computational time compared to other symbolic regression approaches.
- Published
- 2021
- Full Text
- View/download PDF