1. A novel multi-view pedestrian detection database for collaborative Intelligent Transportation Systems
- Author
-
Mohamed Ali Mahjoub, Atika Rivenq, Ihsen Alouani, Anouar Ben Khalifa, Laboratory of Advanced Technology and Intelligent Systems (LATIS), Ecole Nationale d'Ingénieurs de Sousse (ENISo), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), COMmunications NUMériques - IEMN (COMNUM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Université de Sousse, Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), and Institut National des Sciences Appliquées (INSA)
- Subjects
Scheme (programming language) ,Collaborative intelligence ,Computer Networks and Communications ,Computer science ,Pedestrian detection ,02 engineering and technology ,computer.software_genre ,Task (project management) ,[SPI]Engineering Sciences [physics] ,11. Sustainability ,0202 electrical engineering, electronic engineering, information engineering ,Intelligent transportation system ,ComputingMilieux_MISCELLANEOUS ,computer.programming_language ,Environment perception ,Monocular ,Database ,020206 networking & telecommunications ,Multi-view ,Hardware and Architecture ,Infrastructure to vehicle ,020201 artificial intelligence & image processing ,computer ,CNN ,Software - Abstract
International audience; Recent advances in machine-learning, especially in deep neural networks have significantly accelerated the development and deployment of transport-oriented intelligent designs with increasingly high efficiency. While these technologies are exceptionally promising toward revolutionizing our current mobility and reducing the number of road accidents, the way to safe Intelligent Transportation Systems (ITS) remains long. Since pedestrians are the most vulnerable road users, designing accurate pedestrian detection methods is a priority task. However, traditional monocular pedestrian detection methods are limited, especially in occlusion handling. Hence, a collaborative perception scheme in which vehicles no longer restrict their input data to their immediate embedded sensors and rather exploit data from remote sensors is necessary to achieve a more comprehensive environment perception. In this work, we propose a novel public dataset: Infrastructure to Vehicle Multi-View Pedestrian Detection Database (I2V-MVPD) that combines synchronized images from both a mobile camera embedded in a car and a static camera in the road infrastructure. We also propose a new multi-view pedestrian detection framework based on collaborative intelligence between vehicles and infrastructure. Our results show a significant improvement in detection performance over monocular detection.
- Published
- 2020