1. Shaking table tests of a full-scale flat-bottom manufactured steel silo filled with wheat: main results on the fixed-base configuration
- Author
-
Adam J. Sadowski, Elisa Rizzo Parisi, Alberto Pavese, Laura Vadrucci, Stefano Silvestri, Caterina Neri, Marco Furinghetti, Johann Distl, Francesco Selva, Enrique Hernández-Montes, Tomoyo Taniguchi, Sulyman Mansour, Michele Palermo, Matteo Marra, Felix Weber, Igor Lanese, Silvestri S., Mansour S., Marra M., Distl J., Furinghetti M., Lanese I., Hernandez-Montes E., Neri C., Palermo M., Pavese A., Rizzo Parisi E., Sadowski A.J., Selva F., Taniguchi T., Vadrucci L., and Weber F.
- Subjects
flat-bottom silo ,Technology ,Engineering, Civil ,Dynamic properties ,0211 other engineering and technologies ,Full scale ,020101 civil engineering ,02 engineering and technology ,GeneralLiterature_MISCELLANEOUS ,0905 Civil Engineering ,0201 civil engineering ,pressure ,Engineering ,granular solid ,Silo ,Earth and Planetary Sciences (miscellaneous) ,Geotechnical engineering ,Engineering, Geological ,ComputingMilieux_MISCELLANEOUS ,Fixed base ,021110 strategic, defence & security studies ,Science & Technology ,Flat-bottom silo ,Strategic, Defence & Security Studies ,dynamic properties ,Geotechnical Engineering and Engineering Geology ,pressures ,dynamic propertie ,Shaking table ,shaking table ,Earthquake shaking table ,Granular solid ,Geology ,Pressures - Abstract
H2020 Research Infrastructures, Grant/Award Number: 730900, This paper reports on a series of shaking table tests on a full-scale flat-bottom steel silo filled with soft wheat, characterized by aspect ratio of around 0.9. The specimen was a 3.64-m diameter and 5.50-m high corrugated-wall cylindrical silo. Multiple sensors were used to monitor the static and dynamic response of the filled silo system, including accelerometers and pressure cells. Numerous unidirectional dynamic tests were performed consisting of random signals, sinusoidal inputs, and both artificial and real earthquake records. The objectives of this paper are (i) to provide a general overview of the whole experimental campaign and (ii) to present selected results obtained for the fixed-base configuration. The measured data were processed to assess the static pressures, the dynamic overpressures (related to the effective mass) and the accelerations of monitored points on the silo wall, and to identify the basic dynamic properties (fundamental frequency of vibration, damping ratio, dynamic amplification factors) of the filled silo. Themain findings are discussed and compared with the predictions given by available theoreticalmodels and code provisions. It is found that the fundamental frequency slightly decreases with increasing acceleration, while it slightly increases with increasing compaction of the granular material. For close-to-resonance input, the dynamic amplification (in terms of peak values of accelerations) increases along the height of the silo wall up to values of around 1.4 at the top surface of the solid content. The dynamic overpressures appear to increase with depth (differently from the EN1998-4 expectations), and to be proportional to the acceleration., H2020 Research Infrastructures 730900
- Published
- 2021