1. GLDH: Toward more efficient global low-density locality-sensitive hashing for high dimensions
- Author
-
Huakun Liu, Ruliang Xiao, Yiqi Li, Xin Wei, Shi Zhang, and Xin Du
- Subjects
Information Systems and Management ,Current (mathematics) ,Computer science ,05 social sciences ,050301 education ,02 engineering and technology ,Partition (database) ,Ensemble learning ,Computer Science Applications ,Theoretical Computer Science ,Locality-sensitive hashing ,Set (abstract data type) ,Hyperplane ,Artificial Intelligence ,Control and Systems Engineering ,Search algorithm ,Cut ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,0503 education ,Algorithm ,Software - Abstract
Despite decades of intensive effort, the current solutions for efficiently searching high-dimensional data spaces are not entirely satisfactory. This paper proposes a more efficient global low-density locality sensitive hashing search algorithm (GLDH) based on the minimal cut hyperplane and ensemble learning. The innovation is that a novel global low-density hyperplane candidate set is constructed by the graph cut method, the minimum information gain method and random maximum entropy method are used to greedily select the hyperplane, and the ensemble learning method is used to query the global approximate nearest-neighbors data. This paper proves that the GLDH algorithm produces a low error hyperplane partition. The results of extensive experiments show that the proposed GLDH method performs better than the latest methods when using the same hash coding length for datasets from different fields.
- Published
- 2020