1. New microwave-based missions applications for rainfed crops characterization
- Author
-
N. Sánchez, J. M. Lopez-Sanchez, B. Arias-Pérez, R. Valcarce-Diñeiro, J. Martínez-Fernández, J. M. Calvo-Heras, A. Camps, A. González-Zamora, F. Vicente-Guijalba, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
- Subjects
lcsh:Applied optics. Photonics ,Teledetecció ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,02 engineering and technology ,Backscattering ,Salinity measurement ,lcsh:Technology ,01 natural sciences ,Backscattering coefficients ,law.invention ,Normalized difference vegetation index ,law ,Radar ,Water content ,2. Zero hunger ,GNSS-R ,Fraction of vegetation cover ,Soil surveys ,Remote sensing ,Geography ,Global Positioning System ,Synthetic aperture radar ,Radarsat-2 ,Field experiment ,Radar measurement ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Radar [Àrees temàtiques de la UPC] ,Polarimetry ,Crops ,Normalized Difference Vegetation Index ,LANDSAT ,Global navigation satellite systems ,Leaf area index ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Vegetation ,lcsh:T ,business.industry ,Radar stations ,lcsh:TA1501-1820 ,15. Life on land ,Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció [Àrees temàtiques de la UPC] ,lcsh:TA1-2040 ,Soil moisture measurement ,Soil moisture ,lcsh:Engineering (General). Civil engineering (General) ,business ,Global positioning system - Abstract
A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar (SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the correlations found for the different crops under study types suggested a way to a feasible classification of crops.
- Published
- 2016
- Full Text
- View/download PDF