1. Superresolution imaging of fluorescent nanospheres by using high-index microspheres embedded in slabs with illumination provided by plasmonic array
- Author
-
Vasily N. Astratov, Augustine Urbas, Farzaneh Abolmaali, Nicholaos I. Limberopoulos, Alexey V. Maslov, Aaron Brettin, Dennis E. Walker, Cobey L. McGinnis, Luiz Poffo, University of North Carolina [Charlotte] (UNC), University of North Carolina System (UNC), Air Force Research Laboratory (AFRL), United States Air Force (USAF), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), University of Nizhny Novgorod, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), and Lobachevsky State University [Nizhni Novgorod]
- Subjects
Diffraction ,Materials science ,Superlens ,photonic nanojets ,Physics::Optics ,super-resolution ,02 engineering and technology ,Dielectric ,01 natural sciences ,010309 optics ,Optics ,microfiber ,0103 physical sciences ,Plasmon ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Resolution (electron density) ,fluorescent nanosphere ,021001 nanoscience & nanotechnology ,Cutoff frequency ,microsphere ,Near-field scanning optical microscope ,Antenna (radio) ,0210 nano-technology ,business ,near-field microscopy - Abstract
International audience; It is shown that the resolution of virtual images of dye-doped dielectric nanospheres obtained through dielectric microspheres can be increased beyond the classical diffraction limit by decreasing the period of nanoplasmonic array used for localized plasmonic structured illumination of these objects. In contrast to far-field superlens design, the superresolution is obtained without using metallic layers and gratings after superlens. In addition, it is shown that the postimaging processing, which represents an intrinsic part of SIM, is not required for achieving the super-resolved images. This observation is interpreted based on a concept that the radiation of objects placed at the surface of nanoplasmonic arrays with sufficiently short periods is initially provided into folded dispersions of nanoplamonic array, so that the diffraction orders responsible for super-resolution are more efficiently coupled to dielectric microspherical antenna compared to that for the propagating modes within the cutoff frequency.
- Published
- 2018
- Full Text
- View/download PDF