Tomáš Neuman, Guillaume Schull, Michelangelo Romeo, Luis E. Parra López, Ruben Soria-Martinez, Benjamin Doppagne, Stéphane Berciaud, Javier Aizpurua, Fabrice Scheurer, Hervé Bulou, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Donostia International Physics Center (DIPC), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), schull, guillaume, European Research Council, European Commission, Agence Nationale de la Recherche (France), Université de Strasbourg, Ministerio de Economía y Competitividad (España), Eusko Jaurlaritza, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Tautomerization, the interconversion between two constitutional molecular isomers, is ubiquitous in nature, plays a major role in chemistry and is perceived as an ideal switch function for emerging molecular-scale devices. Within free-base porphyrin, porphycene or phthalocyanine, this process involves the concerted or sequential hopping of the two inner hydrogen atoms between equivalent nitrogen sites of the molecular cavity. Electronic and vibronic changes that result from this NH tautomerization, as well as details of the switching mechanism, were extensively studied with optical spectroscopies, even with single-molecule sensitivity. The influence of atomic-scale variations of the molecular environment and submolecular spatial resolution of the tautomerization could only be investigated using scanning probe microscopes, at the expense of detailed information provided by optical spectroscopies. Here, we combine these two approaches, scanning tunnelling microscopy (STM) and fluorescence spectroscopy, to study the tautomerization within individual free-base phthalocyanine (HPc) molecules deposited on a NaCl-covered Ag(111) single-crystal surface. STM-induced fluorescence (STM-F) spectra exhibit duplicate features that we assign to the emission of the two molecular tautomers. We support this interpretation by comparing hyper-resolved fluorescence maps(HRFMs) of the different spectral contributions with simulations that account for the interaction between molecular excitons and picocavity plasmons. We identify the orientation of the molecular optical dipoles, determine the vibronic fingerprint of the tautomers and probe the influence of minute changes in their atomic-scale environment. Time-correlated fluorescence measurements allow us to monitor the tautomerization events and to associate the proton dynamics to a switching two-level system. Finally, optical spectra acquired with the tip located at a nanometre-scale distance from the molecule show that the tautomerization reaction occurs even when the tunnelling current does not pass through the molecule. Together with other observations, this remote excitation indicates that the excited state of the molecule is involved in the tautomerization reaction path., The authors thank V. Speisser for technical support and A. Boeglin and Andrei Borissov for fruitful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 771850). The Agence National de la Recherche (project SMALL’LED no. ANR-14-CE26-0016-01), the Labex NIE (Contract no. ANR-11- LABX-0058_NIE) and the International Center for Frontier Research in Chemistry (FRC) are acknowledged for financial support. R.S.-M. and H.B. acknowledge GENCICINES (Project no. A0060907459) and the Pôle HPC and Equipex Equip@Meso at the University of Strasbourg. T.N. and J.A. acknowledge the project FIS2016-80174-P from the Spanish Ministry of Science, and project ELKARTEK KK-2018/00001 from the Basque Government, as well as grant IT1164-19 from the Basque Government for consolidated groups at the university