1. Effect of Depth-Induced Breaking on Wind Wave Simulations in Shallow Nearshore Waters off Northern Taiwan during the Passage of Two Super Typhoons
- Author
-
Wen Ray Su, Wei-Bo Chen, Wen Dar Guo, Shih Chun Hsiao, Chih Hsin Chang, and Han Lun Wu
- Subjects
010504 meteorology & atmospheric sciences ,020209 energy ,Naval architecture. Shipbuilding. Marine engineering ,VM1-989 ,Ocean Engineering ,02 engineering and technology ,GC1-1581 ,Surf zone ,Atmospheric sciences ,Oceanography ,01 natural sciences ,Deep sea ,Wind wave ,0202 electrical engineering, electronic engineering, information engineering ,Hindcast ,wave-breaking criterion ,0105 earth and related environmental sciences ,Water Science and Technology ,Civil and Structural Engineering ,wave-breaking formulation ,Radius ,shallow nearshore waters ,Typhoon ,Submarine pipeline ,depth-induced wave breaking ,Significant wave height ,Geology - Abstract
Super Typhoons Maria (2018) and Lekima (2019) were adopted for this case study, although they only passed the northern offshore waters of Taiwan without making landfall. A direct modification technique was employed to create the atmospheric conditions for a wave-circulation model to hindcast large typhoon-driven waves. The radius of the modified scale (Rtrs) for a hybrid typhoon wind plays an important role in the significant wave height (SWH) simulations during the passage of typhoons. The maximum increment in peak SWH reached 3.0 m and 5.0 m in the deep ocean for Super Typhoons Maria (2018) and Lekima (2019), respectively if the Rtrs was increased from 4 × Rmax (radius of the maximum wind) to 7 × Rmax. The SWHs induced by the typhoon winds in the surf zone were more sensitive to different wave-breaking formulations used in the wave-circulation model. The maximum difference in peak SWH reached 2.5 m and 1.2 m for Super Typhoons Maria (2018) and Lekima (2019), respectively, when the wave-breaking formulations of BJ78 (proposed by Battjes and Janssen in 1978) and CT93 (proposed by Church and Thornton in 1993) were introduced to the wave-circulation model. The SWH simulations in the surf zone were insensitive to the wave-breaking criterion (γ) during the passage of typhoons. In shallow nearshore waters, the utilization of a constant γ for the wave-circulation model always produces peak SWHs that are smaller than those using γ based on local steepness or peak steepness.
- Published
- 2021
- Full Text
- View/download PDF