1. Plasmon waveguide resonance for sensing glycan–lectin interactions
- Author
-
Yannick Coffinier, Ievgen Kurylo, Isabel D. Alves, Vladimir Zaitsev, Sabine Szunerits, Etienne Harté, Aloysius Siriwardena, Rabah Boukherroub, Université Pierre et Marie Curie - Paris 6 (UPMC), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux (UB)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé-Université de Lille, Sciences et Technologies, Laboratoire des Glucides (LG), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Picardie Jules Verne (UPJV), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Université de Lille, Sciences et Technologies-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), and Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Glycan ,Azides ,Arachis ,Surface Properties ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biochemistry ,Analytical Chemistry ,chemistry.chemical_compound ,Polysaccharides ,Lectins ,Environmental Chemistry ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Spectroscopy ,Plasmon ,ComputingMilieux_MISCELLANEOUS ,Detection limit ,biology ,Surface Plasmon Resonance ,021001 nanoscience & nanotechnology ,Resonance (chemistry) ,Silicon Dioxide ,0104 chemical sciences ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,chemistry ,Covalent bond ,Click chemistry ,biology.protein ,Click Chemistry ,Lens Plant ,Azide ,0210 nano-technology ,Ethylene glycol ,Mannose - Abstract
Carbohydrate-modified interfaces have been shown to be valuable tools for the study of protein–glycan recognition events. Label-free approache such as plasmonic based techniques are particularly attractive. This paper describes a new analytical platform for the sensitive and selective screening of carbohydrate–lectin interactions using plasmon waveguide resonance. Planar optical waveguides (POW), consisting of glass prisms coated with silver (50 nm) and silica (460 nm) layers were derivatized with mannose or lactose moieties. The specific association of the resulting interface with selected lectins was assessed by following the changes in its plasmonic response. The immobilization strategy investigated in this work is based on the formation of a covalent bond between propargyl-functionalized glycans and surface-linked azide groups via a Cu(I) “click” chemistry. Optimization of the surface architecture through the introduction of an oligo(ethylene glycol) spacer between the plasmonic surface and the glycan ligands provided an interface which allowed screening of glycan–lectin interactions in a highly selective manner. The limit of detection (LOD) of this method for this particular application was found to be in the subnanomolar range (0.5 nM), showing it to constitute a promising analytical platform for future development and use in a pharmaceutical or biomedical setting.
- Published
- 2015