1. Epitaxial stabilization versus interdiffusion: synthetic routes to metastable cubic HfO2 and HfV2O7 from the core–shell arrangement of precursors
- Author
-
Gregory R. Waetzig, Sarbajit Banerjee, Guan-Wen Liu, Oscar Gonzalez, Beth S. Guiton, Justin L. Andrews, Melonie P. Thomas, and Nathan A. Fleer
- Subjects
Materials science ,Nucleation ,02 engineering and technology ,Crystal structure ,Atmospheric temperature range ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Vanadium oxide ,0104 chemical sciences ,Amorphous solid ,Tetragonal crystal system ,Negative thermal expansion ,Chemical physics ,Metastability ,General Materials Science ,0210 nano-technology - Abstract
Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core–shell arrangement of VO2 and amorphous HfO2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V2O3/HfO2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO2 under ambient conditions. Free-standing cubic HfO2, otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV2O7. Variable temperature powder X-ray diffraction demonstrate that the prepared HfV2O7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds.
- Published
- 2019
- Full Text
- View/download PDF