22 results on '"R.-B. Gerst"'
Search Results
2. Investigation of the ground-state spin inversion in the neutron-rich Cl47,49 isotopes
- Author
-
Jason D. Holt, Carlo Barbieri, Zaihong Yang, I. Murray, D. M. Rossi, K. I. Hahn, S. Y. Park, C. Hilaire, Kazuyuki Ogata, C. Lehr, H. Baba, Duo Yan, David Steppenbeck, H. Törnqvist, P. Koseoglou, Masahiro Yasuda, V. Lapoux, Yasuhiro Togano, N. L. Achouri, R.-B. Gerst, Alessandra Corsi, T. Lokotko, B. D. Linh, L. Stuhl, H. Wang, Dóra Sohler, M. Gómez-Ramos, Igor Gašparić, H. N. Liu, Y. L. Sun, Takashi Nakamura, E. Sahin, Petr Navrátil, V. Panin, W. Rodriguez, N. Shimizu, J. M. Gheller, A. Moro, Victor Vaquero, L. X. Chung, Thomas Duguet, K. Moschner, Hiroyoshi Sakurai, Kathrin Wimmer, Dong-Wook Kim, A. Delbart, N. T. Khai, V. Wagner, N. Paul, P. Doornenbal, T. Motobayashi, V. Somà, D. Calvet, T. Isobe, K. Yoneda, O. Aktas, V. Werner, Y. Yamada, Thomas Aumann, F. Flavigny, N. D. Ton, T. Kobayashi, A. Giganon, X. X. Xu, F. Château, Hideaki Otsu, Julien Gibelin, Si-Ge Chen, N. T. T. Phuc, P. A. Söderström, A. Gillibert, Nobuyuki Chiga, A. Obertelli, T. Koiwai, Tomohiro Uesaka, F. Browne, M. MacCormick, Satoshi Takeuchi, M. L. Cortés, Masaki Sasano, S. Franchoo, Yutaka Utsuno, Jenny Lee, Yuya Kubota, L. Zanetti, and Yosuke Kondo
- Subjects
Physics ,Isotope ,010308 nuclear & particles physics ,0103 physical sciences ,Neutron ,Atomic physics ,010306 general physics ,Spin (physics) ,Ground state ,01 natural sciences ,Inversion (discrete mathematics) ,Nuclear theory - Published
- 2021
- Full Text
- View/download PDF
3. Investigation of the Δn = 0 selection rule in Gamow-Teller transitions: The β-decay of 207Hg
- Author
-
Mark Huyse, Claes Fahlander, Edward Simpson, R. Lica, F. Rotaru, A. Negret, R. Wadsworth, C. Sotty, H. O. U. Fynbo, István Kuti, Ángel Perea, Olof Tengblad, N.K. Timofeyuk, María José García Borge, M. V. Lund, A. Gredley, W. Gelletly, R. Mărginean, Raymond J. Carroll, C. R. Niţă, Zena Patel, R. E. Mihai, V. Vedia, Philip M Walker, Zs. Podolyák, C. Mihai, Miguel Madurga, E. Rapisarda, F. Wearing, Joonas Konki, S. Lalkovski, P. Van Duppen, I. Marroquin, V. F. E. Pucknell, H. De Witte, T. Alexander, Panu Rahkila, I.H. Lazarus, J. Creswell, L. M. Fraile, Paul Greenlees, S. Ansari, P. H. Regan, L. J. Harkness-Brennan, N. Marginean, T. Berry, Thierry Stora, R. B. Gerst, S. M. Judge, C. M. Shand, Enrique Nácher, S. Pascu, A. Turturica, S. Stegemann, Andrei Andreyev, N. Warr, S. Nae, R. D. Page, D. S. Judson, J. Kurcewicz, H. Grawe, M. Górska, European Commission, Science and Technology Facilities Council (UK), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Research Foundation - Flanders, University of Leuven, Belgian Science Policy Office, Helmholtz-Zentrum Berlin for Materials and Energy, National Measurement Office (UK), and SCOAP
- Subjects
Physics ,Nuclear and High Energy Physics ,ta114 ,010308 nuclear & particles physics ,State (functional analysis) ,01 natural sciences ,lcsh:QC1-999 ,Nuclear physics ,medicine.anatomical_structure ,Nucleosynthesis ,0103 physical sciences ,medicine ,Nuclear Physics - Experiment ,Limit (mathematics) ,Gamow-Teller transitions ,ydinfysiikka ,010306 general physics ,Ground state ,Wave function ,Nuclear Experiment ,Nucleus ,lcsh:Physics - Abstract
5 pags., 3 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0, Gamow-Teller β decay is forbidden if the number of nodes in the radial wave functions of the initial and final states is different. This Δn=0 requirement plays a major role in the β decay of heavy neutron-rich nuclei, affecting the nucleosynthesis through the increased half-lives of nuclei on the astrophysical r-process pathway below both Z=50 (for N>82) and Z=82 (for N>126). The level of forbiddenness of the Δn=1ν1g →π0g transition has been investigated from the β decay of the ground state of Hg into the single-proton-hole nucleus Tl in an experiment at the ISOLDE Decay Station. From statistical observational limits on possible γ-ray transitions depopulating the π0g state in Tl, an upper limit of 3.9×10 % was obtained for the probability of this decay, corresponding to logft>8.8 within a 95% confidence limit. This is the most stringent test of the Δn=0 selection rule to date., Support from the European Union seventh framework through ENSAR contract no. 262010, the Science and Technology Facilities Council through grants ST/P005314/1, ST/L005743/1 and ST/J000051/1 (UK), the MINECO projects FPA2015-64969-P, FPA2015-65035-P and FPA2017-87568-P (Spain), FWO-Vlaanderen (Belgium), GOA/2015/010 (BOF KU Leuven), the Excellence of Science programme (EOS-FWO), and the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12) is acknowledged. ZsP acknowledges support by the ExtreMe Matter Institute EMMI at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. PHR and SMJ ac-knowledge support from the UK Department for Business, Energy and Industrial Strategy via the National Measurement Office.
- Published
- 2019
- Full Text
- View/download PDF
4. Pairing Forces Govern Population of Doubly Magic Ca54 from Direct Reactions
- Author
-
J. M. Gheller, S. Y. Park, K. Yoneda, Masaki Sasano, P. A. Söderström, D. Sohler, D. Körper, H. Simon, A. Gillibert, K. Miki, Satoshi Takeuchi, Yasuhiro Togano, M. MacCormick, R.-B. Gerst, Duo Yan, Tomohiro Uesaka, Fabia Schindler, V. Wagner, B. D. Linh, M. Holl, A. Corsi, N. Paul, Igor Gašparić, H. N. Liu, P. Koseoglou, E. Sahin, Yosuke Kondo, T. Lokotko, T. Isobe, Victor Vaquero, M. L. Cortés, V. Werner, Takashi Nakamura, W. Rodriguez, Zaihong Yang, A. Delbart, S. Franchoo, F. Château, V. Lapoux, P. Doornenbal, K. I. Hahn, L. Stuhl, I. Murray, C. Caesar, Kazuyuki Ogata, C. Lehr, T. Kobayashi, X. X. Xu, C. Hilaire, Si-Ge Chen, Yutaka Utsuno, V. Panin, A. Giganon, Jenny Lee, N. L. Achouri, L. X. Chung, Y. L. Sun, K. Moschner, Yuya Kubota, D. M. Rossi, H. Baba, F. Flavigny, Masahiro Yasuda, L. Zanetti, Kathrin Wimmer, Dong-Wook Kim, O. Aktas, F. Browne, S. Wang, A. Obertelli, J. Kahlbow, Hiroyoshi Sakurai, T. Motobayashi, Julien Gibelin, K. Boretzky, D. Calvet, David Steppenbeck, H. Törnqvist, Thomas Aumann, Nobuyuki Chiga, T. Koiwai, Kazuki Yoshida, Hideaki Otsu, Hirofumi Yamada, and J. Tscheuschner
- Subjects
Physics ,education.field_of_study ,Proton ,010308 nuclear & particles physics ,Nuclear Theory ,Population ,Nuclear shell model ,General Physics and Astronomy ,01 natural sciences ,7. Clean energy ,Pairing ,Excited state ,0103 physical sciences ,Neutron ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Nucleon ,Ground state ,education - Abstract
Direct proton-knockout reactions of ^{55}Sc at ∼220 MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^{55}Sc ground state with states in ^{54}Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^{55}Sc, valence proton removals populated predominantly the ground state of ^{54}Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.
- Published
- 2021
- Full Text
- View/download PDF
5. First spectroscopic study of V63 at the N=40 island of inversion
- Author
-
K. Moschner, David Steppenbeck, F. Browne, Jenny Lee, H. Törnqvist, Y. L. Sun, Kathrin Wimmer, Yuya Kubota, A. Gillibert, V. Panin, E. Sahin, L. X. Chung, D. Calvet, T. Isobe, Alessandra Corsi, Dóra Sohler, R.-B. Gerst, M. MacCormick, Yosuke Kondo, F. Château, Hideaki Otsu, P. Doornenbal, Hirofumi Yamada, N. Paul, V. Werner, Satoshi Takeuchi, M. L. Cortés, Masahiro Yasuda, D. M. Rossi, S. Franchoo, C. Lehr, W. Rodriguez, H. Baba, S. Y. Park, Z. Elekes, A. Giganon, Kazuyuki Ogata, Nobuyuki Chiga, Duo Yan, T. Lokotko, L. Zanetti, L. Stuhl, K. Yoneda, T. Koiwai, Takashi Nakamura, A. Delbart, Masaki Sasano, N. L. Achouri, S. Wang, B. D. Linh, Igor Gašparić, H. N. Liu, Yasuhiro Togano, V. Wagner, P. Koseoglou, F. Flavigny, J. M. Gheller, Tomohiro Uesaka, A. Obertelli, Zs. Dombrádi, Hiroyoshi Sakurai, T. Motobayashi, Julien Gibelin, Dong-Wook Kim, O. Aktas, V. Lapoux, K. Yoshida, M. M. Juhász, Kamila Sieja, Zaihong Yang, I. Murray, K. I. Hahn, T. Kobayashi, X. X. Xu, Si-Ge Chen, P. A. Söderström, Victor Vaquero, Thomas Aumann, and C. Hilaire
- Subjects
Physics ,010308 nuclear & particles physics ,Island of inversion ,0103 physical sciences ,Geophysics ,010306 general physics ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
6. Spectroscopy and lifetime measurements in Te134,136,138 isotopes and implications for the nuclear structure beyond N=82
- Author
-
D. Verney, D. Ralet, J. Wiederhold, S. Bottoni, L. Matthieu, B. Fornal, A. Blazhev, P. H. Regan, C. Schmitt, R.L. Canavan, K. Rezynkina, D. Reygadas Tello, A. Lopez-Martens, K. Hauschild, B. Wasilewska, I. Matea, A. Korgul, C. Henrich, J. Jolie, V. Guadilla, M. Lebois, M. Babo, Th. Kröll, L. M. Fraile, J. Benito, G. Benzoni, T. Kurtukian-Nieto, L. Qi, Stephan Oberstedt, C. Porzio, M. Bunce, N. Warr, R. B. Gerst, P. A. Söderström, Y. Popovitch, W. Paulsen, F. Ibrahim, Ł. W. Iskra, G. Häfner, J. N. Wilson, S. Jazwari, M. S. Yavahchova, R. Chakma, C. Delafosse, A. Boso, R. Lozeva, N. Jovančević, V. Sanchez, H. Naïdja, M. Rudigier, P. Adsley, L. Le-meur, N. Cieplicka-Oryńczak, I. Homm, E. Adamska, G. Tocabens, K. Belvedere, D. Gjestvang, D. Thisse, M. L. Cortés, P. Koseoglou, P. Davies, V. Vedia, J. Nemer, M. Piersa, Muriel Fallot, C. Sürder, K. Miernik, S. M. Collins, S. Ziliani, D. Etasse, Fabio Zeiser, and J. Ljungvall
- Subjects
Physics ,Spectrometer ,Isotope ,010308 nuclear & particles physics ,Fission ,Nuclear structure ,Context (language use) ,7. Clean energy ,01 natural sciences ,Excited state ,0103 physical sciences ,Neutron source ,Atomic physics ,010306 general physics ,Spectroscopy - Abstract
We report on spectroscopic information and lifetime measurements of even-even neutron-rich Te isotopes. Excited states were populated in fast-neutron induced fission of U238 at the ALTO facility of IJCLab with the LICORNE neutron source and detected using the hybrid ν-ball spectrometer. We provide first results on lifetimes of the 61+ state in Te136 and the (61+), (41+), and (21+) states in Te138 and discuss the results in the context of large-scale shell-model calculations. The level schemes of Te136 and Te138 are revised in terms of lifetimes of their 21+,41+ states and updated information on the (42+) state in Te136 is presented. In addition, previously reported data on spectroscopy and lifetimes in Te134 are reexamined. This work provides new insights into the evolution of collectivity for Te isotopes with N=82,84,86.
- Published
- 2021
- Full Text
- View/download PDF
7. Angular momentum generation in nuclear fission
- Author
-
B. Fornal, M. S. Yavahchova, C. Delafosse, A. Boso, V. Sánchez-Tembleque, K. Rezynkina, M. Lebois, K. Hauschild, T. Kröll, Muriel Fallot, P. Adsley, J. Ljungvall, Ł. W. Iskra, F. Ibrahim, E. Adamska, C. Henrich, A. Gottardo, Stephan Oberstedt, R. Chakma, C. Sürder, V. Guadilla, C. Porzio, P. H. Regan, J. Benito, A. Korgul, R. Lozeva, L. Le Meur, M. Piersa, P. Ivanov, V. Vedia, J. Nemer, B. Wasilewska, N. Jovančević, Y. Popovitch, W. Paulsen, C. Schmitt, N. Cieplicka-Oryńczak, R. B. Gerst, Sunniva Siem, G. Tocabens, P. A. Söderström, K. Belvedere, S. Courtin, S. Ziliani, R. Canavan, D. Gjestvang, L. Qi, D. Etasse, P. Koseoglou, G. Häfner, I. Matea, I. Homm, M. Heine, L. M. Fraile, T. Kurtukian-Nieto, Fabio Zeiser, P. Davies, D. Thisse, M. L. Cortés, A. Blazhev, S. Jazrawi, M. Bunce, A. Lopez-Martens, K. Miernik, Alejandro Algora, M. Rudigier, J. N. Wilson, N. Warr, J. Wiederhold, D. Verney, D. Ralet, M. Babo, L. Gaudefroy, G. Benzoni, S. Bottoni, S. Leoni, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Oslo (UiO), Department of Physics, University of Surrey, University of Surrey (UNIS), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), CEA, Bruyeres le Chatel, France, affiliation inconnue, University of Warsaw (UW), Facultat de Fisica [València] (UV), Universitat de València (UV), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Università degli Studi di Milano = University of Milan (UNIMI), Institut für Kernphysik der Universität zu Köln, Universität zu Köln = University of Cologne, National Physical Laboratory [Teddington] (NPL), Instytut Fizyki Jądrowej PAN (IFJ), Polskiej Akademii Nauk, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), University of Manchester [Manchester], Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Istituto Nazionale di Fisica Nucleare, Sezione di Padova (INFN, Sezione di Padova), Istituto Nazionale di Fisica Nucleare (INFN), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), European Commission - Joint Research Centre [Geel] (JRC), Grand Accélérateur National d'Ions Lourds (GANIL), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, ELI NP Dept, Reactorului Str 30, Magurele 077125, Romania, Софийски университет = Sofia University, Technische Universität Darmstadt (TU Darmstadt), Universidad Complutense de Madrid [Madrid] (UCM), Università degli studi di Milano [Milano], Universität zu Köln, Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Technical University Darmstadt (TU), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), University of Sofia, Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Università degli Studi di Milano [Milano] (UNIMI), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Direction des Applications Militaires (DAM), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Physics ,[PHYS]Physics [physics] ,Angular momentum ,Multidisciplinary ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Spins ,010308 nuclear & particles physics ,Fission ,Nuclear Theory ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Nuclear fission ,0103 physical sciences ,Atomic nucleus ,Nuclear Experiment ,010306 general physics ,Nucleon ,Excitation ,ComputingMilieux_MISCELLANEOUS ,Spin-½ - Abstract
When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning1; this phenomenon has been a mystery in nuclear physics for over 40 years2,3. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum4–12. Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the γ-ray heating problem in nuclear reactors13,14, for the study of the structure of neutron-rich isotopes15,16, and for the synthesis and stability of super-heavy elements17,18. γ-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.
- Published
- 2021
- Full Text
- View/download PDF
8. Lifetime measurements in $^{182}\hbox {Pt}$ using $\gamma $–$\gamma $ fast-timing
- Author
-
L. Knafla, J.-M. Régis, N. Saed-Samii, C. Müller-Gatermann, C. Fransen, A. Esmaylzadeh, V. Karayonchev, A. Blazhev, R.-B. Gerst, J. Jolie, K. O. Zell, G. Häfner, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Hadron ,State (functional analysis) ,Scintillator ,Tandem accelerator ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Excited state ,0103 physical sciences ,Nuclear fusion ,Atomic physics ,010306 general physics ,Beam energy ,Mixing (physics) - Abstract
The level lifetimes of the $$2_1^+$$ 2 1 + and $$4_1^+$$ 4 1 + states in $$^{182}\hbox {Pt}$$ 182 Pt have been re-measured employing the $$\gamma $$ γ –$$\gamma $$ γ fast-timing technique using fast $$\hbox {LaBr}_3$$ LaBr 3 (Ce) scintillators. Excited states in the nucleus of interest were populated by the fusion-evaporation reaction $$^{170}\hbox {Yb}(^{16}\hbox {O},\hbox {4n})^{182}\hbox {Pt}$$ 170 Yb ( 16 O , 4n ) 182 Pt at a beam energy of 87 MeV provided by the FN Tandem accelerator of the University of Cologne. The lifetime of the $$2_1^+$$ 2 1 + state was re-measured with high accuracy to be $$\tau = 563(12)~$$ τ = 563 ( 12 ) ps and resolves inconsistencies from previous measurements. Experimental results are compared to theoretical calculations in the framework of the sd-IBM with and without configuration mixing.
- Published
- 2021
- Full Text
- View/download PDF
9. First spectroscopic study of $^{51}$Ar by the (p,2p) reaction
- Author
-
Zs. Dombradi, S. Y. Park, T. Isobe, F. Browne, K. Moschner, Thomas Aumann, R.-B. Gerst, F. Château, Kathrin Wimmer, X. X. Xu, Z. Elekes, L. Zanetti, Hideaki Otsu, B. D. Linh, Hirofumi Yamada, Si-Ge Chen, P. A. Söderström, Yutaka Utsuno, Igor Gašparić, H. N. Liu, Jenny Lee, Zaihong Yang, I. Murray, Yasuhiro Togano, F. Flavigny, K. I. Hahn, L. Stuhl, Yuya Kubota, V. Wagner, Tomohiro Uesaka, A. Giganon, D. Kim, M. MacCormick, C. Lehr, V. Panin, L. X. Chung, P. Koseoglou, T. Lokotko, Y.L. Sun, E. Sahin, K. Yoneda, Victor Vaquero, M. L. Cortés, Takashi Nakamura, S. Franchoo, P. Doornenbal, Satoshi Takeuchi, Masahiro Yasuda, O. Aktas, A. Gillibert, V. Lapoux, Nobuyuki Chiga, Takaharu Otsuka, T. Koiwai, Hiroyoshi Sakurai, T. Motobayashi, M. M. Juhász, Kazuki Yoshida, David Steppenbeck, Julien Gibelin, H. Törnqvist, Toshio Kobayashi, Kazuyuki Ogata, W. Rodriguez, N. L. Achouri, C. Hilaire, S. Wang, Donghang Yan, N. Paul, A. Obertelli, J. M. Gheller, Yosuke Kondo, V. Werner, D. Calvet, D. M. Rossi, Masaki Sasano, H. Baba, D. Sohler, A. Corsi, A. Delbart, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), RIKEN Nishina Center for Accelerator-Based Science, European Research Council, European Commission, Helmholtz International Center for FAIR, German Research Foundation, Alexander von Humboldt Foundation, Ministry of Science and Technology of Vietnam, Government of South Korea, Agencia Estatal de Investigación (España), Federal Ministry of Education and Research (Germany), Helmholtz Graduate School for Hadron and Ion Research, and National Research, Development and Innovation Office (Hungary)
- Subjects
Nuclear and High Energy Physics ,Shell closure ,γ -ray spectroscopy ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,0103 physical sciences ,Bound state ,nuclear shell model ,proton knock-out reaction ,gamma-ray spectroscopy ,invariant-mass method ,radioactive beams ,Invariant mass ,Neutron ,ddc:530 ,Nuclear structure ,010306 general physics ,Spectroscopy ,Physics ,Valence (chemistry) ,Proton knock-out reaction ,010308 nuclear & particles physics ,Invariant mass method ,Isotopes of argon ,lcsh:QC1-999 ,Excited state ,γ-ray spectroscopy ,Atomic physics ,lcsh:Physics - Abstract
8 pags., 4 figs., 3 tabs., The nuclear structure of 51Ar, an uncharted territory so far, was studied by the (p,2p) reaction using γ-ray spectroscopy for the bound states and the invariant mass method for the unbound states. Two peaks were detected in the γ-ray spectrum and six peaks were observed in the 50Ar+n relative energy spectrum. Comparing the results to our shell-model calculations, two bound and six unbound states were established. Three of the unbound states could only be placed tentatively due to the low number of counts in the relative energy spectrum of events associated with the decay through the first excited state of 50Ar. The low cross sections populating the two bound states of 51Ar could be interpreted as a clear signature for the presence of significant subshell closures at neutron numbers 32 and 34 in argon isotopes. It was also revealed that due to the two valence holes, unbound collective states coexist with individual-particle states in 51Ar., We are very grateful to the RIKEN Nishina Center accelerator staff for providing the stable beam and to the BigRIPS team for the smooth operation of the secondary beams. The development of the MINOS device has been supported by the European Research Council through the ERC Grant No. MINOS-258567. F. B. was supported by the RIKEN Special Postdoctoral Researcher Program. K. O. acknowledges the support by Grant-in-Aid for Scientific Research JP16K05352. Y. U. acknowledges the support by Grant-in-Aid for Scientific Research 20K03981. Y. L. S. acknowledges the support of Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2015-705023) from the European Union and the support from the Helmholtz International Center for FAIR. H. N. L. acknowledges the support from the Enhanced Eurotalents program (PCOFUND-GA-2013-600382) co-funded by CEA and the European Union. T. A., C. L., D. R., H. T., V. W., L. Z., H. N. L., V. W. and A. O. acknowledge the support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project No. 279384907-SFB 1245. R. B. G. acknowledges the support from the DFG under Grant No. BL 1513/1-1. Y. L. S. and A. O. acknowledge the support from the Alexander von Humboldt Foundation. B. D. L. and L. X. C. acknowledge the support from the Vietnam Ministry of Science and Technology under Grant No. ĐTCB.01/21/VKHKTHN. I. G. has been supported by HIC for FAIR and HRZZ under project No. 1257 and 7194. K. I. H., D. K. and S. Y. P. acknowledge the support from the NRF grant funded by the Korea government (No. 2017R1A2B2012382 and 2019M7A1A1033186). F. B. acknowledge the support from the RIKEN Special Postdoctoral Researcher Program. D. S. and Z. E. were supported by projects No. GINOP-2.3.3-15-2016-00034 and No. K128947. V. V. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2017-84756-C4-2-P. V. W. and P. K. acknowledge the support from BMBF grants 05P15RDFN1 and 05P19RDFN1. P. K. acknowledges support from HGS-HIRe. This work was also supported by NKFIH (114454).
- Published
- 2021
- Full Text
- View/download PDF
10. First lifetime investigations of $N>82$ iodine isotopes: The quest for collectivity
- Author
-
A. Korgul, J. Wiederhold, Th. Kröll, S. Leoni, P. Adsley, Muriel Fallot, M. Babo, J. Benito, G. Benzoni, V. Vedia, K. Miernik, L. Qi, J. Nemer, V. Guadilla, C. Sürder, S. Bottoni, D. Verney, S. Jazwari, N. Warr, A. Boso, K. Rezynkina, D. Ralet, J. Ljungvall, F. Ibrahim, L. M. Fraile, T. Kurtukian-Nieto, M. Lebois, Fabio Zeiser, R. Chakma, A. Blazhev, P. H. Regan, R. Lozeva, C. Schmitt, L. Matthieu, R.L. Canavan, M. Piersa-Siłkowska, A. Algora, N. Jovančević, J. N. Wilson, Y. Popovitch, N. Cieplicka-Oryńczak, W. Paulsen, E. Adamska, G. Tocabens, P. Davies, K. Belvedere, D. Gjestvang, S. M. Collins, S. Ziliani, D. Etasse, M. Bunce, C. Henrich, R. B. Gerst, A. Lopez-Martens, M. Rudigier, Ł. W. Iskra, G. Häfner, B. Wasilewska, Stephan Oberstedt, C. Porzio, P. A. Söderström, C. Delafosse, V. Sánchez-Tembleque, L. Le-meur, H. Naïdja, M. S. Yavahchova, P. Koseoglou, I. Homm, D. Thisse, M. L. Cortés, D. Reygadas Tello, K. Hauschild, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Grand Accélérateur National d'Ions Lourds (GANIL), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), ILL, and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Isotope ,010308 nuclear & particles physics ,Fission ,chemistry.chemical_element ,Context (language use) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Iodine ,01 natural sciences ,chemistry ,Excited state ,0103 physical sciences ,Neutron source ,Física nuclear ,Atomic physics ,010306 general physics - Abstract
International audience; We report on spectroscopic information and lifetime measurements in the neutron-rich I135,137,139 isotopes. This is the first lifetime data on iodine isotopes beyond N=82. Excited states were populated in fast neutron-induced fission of U238 at the ALTO facility of IJCLab with the LICORNE neutron source and detected using the hybrid ν-ball spectrometer. The level schemes of the I135,137,139 isotopes are revised in terms of excited states with up to maximum spin-parity of (33/2+), populated for the first time in fast neutron-induced fission. We provide first results on the lifetimes of the (9/21+) and (13/21+) states in I137 and I139, and the (17/21+) state in I137. In addition, we give upper lifetime limits for the (11/21+) states in I135−139, the (15/21+) state in I137, the (17/21+) state in I139, and reexamine the (29/21+) state in I137. The isomeric data in I135 are reinvestigated, such as the previously known (15/21+) and (23/21−) isomers with T1/2 of 1.64(14) and 4.6(7) ns, respectively, as obtained in this work. The new spectroscopic information is compared to that from spontaneous or thermal-neutron induced fission and discussed in the context of large scale shell-model (LSSM) calculations for the region beyond Sn132, indicating the behavior of collectivity for the three valence-proton iodine chain with N=82,84,86.
- Published
- 2021
- Full Text
- View/download PDF
11. N=32 shell closure below calcium: Low-lying structure of Ar50
- Author
-
Nobuyuki Chiga, K. Moschner, T. Koiwai, Hiroyoshi Sakurai, V. Lapoux, A. Gillibert, Yutaka Utsuno, D. Calvet, T. Isobe, Kathrin Wimmer, T. Motobayashi, Jenny Lee, Achim Schwenk, H. Toernqvist, Yuya Kubota, Victor Vaquero, R.-B. Gerst, F. Château, W. Rodriguez, N. Shimizu, B. D. Linh, D. M. Rossi, Masahiro Yasuda, Tomohiro Uesaka, Hideaki Otsu, Igor Gašparić, H. N. Liu, V. Panin, H. Baba, Kazuyuki Ogata, L. X. Chung, S. Y. Park, Julien Gibelin, Hirofumi Yamada, K. Yoshida, C. Lehr, Duo Yan, L. Achouri, Zaihong Yang, L. Stuhl, A. Giganon, I. Murray, S. Wang, N. Paul, L. Zanetti, E. Sahin, Y. L. Sun, J. Simonis, A. Obertelli, K. Yoneda, C. Hilaire, K. I. Hahn, V. Werner, David Steppenbeck, Jason D. Holt, P. Doornenbal, A. Delbart, M. MacCormick, P. Koseoglou, J. M. Gheller, Alessandra Corsi, Thomas Aumann, Masaki Sasano, Dóra Sohler, Satoshi Takeuchi, M. L. Cortés, S. Franchoo, T. Kobayashi, F. Flavigny, X. X. Xu, Si-Ge Chen, P. A. Söderström, Dong-Wook Kim, F. Browne, O. Aktas, Yosuke Kondo, Yasuhiro Togano, T. Lokotko, Takashi Nakamura, Javier Fernandez Menendez, and V. Wagner
- Subjects
Physics ,010308 nuclear & particles physics ,0103 physical sciences ,Closure (topology) ,Shell (structure) ,Calcium low ,010306 general physics ,01 natural sciences ,Molecular physics - Published
- 2020
- Full Text
- View/download PDF
12. Prompt and delayed γ spectroscopy of neutron-rich Kr94 and observation of a new isomer
- Author
-
R. Chakma, N. Cieplicka-Oryńczak, P. Adsley, G. Tocabens, Muriel Fallot, K. Belvedere, D. Gjestvang, L. Qi, J. Wiederhold, S. Leoni, C. Sürder, J. Benito, J. N. Wilson, K. Hauschild, R. B. Gerst, Stephan Oberstedt, Ł. W. Iskra, C. Porzio, P. A. Söderström, G. Häfner, M. Rudigier, I. Matea, C. Henrich, D. Verney, R.L. Canavan, K. Miernik, V. Vedia, D. Ralet, J. Nemer, P. Koseoglou, M. Piersa, N. Warr, R. Lozeva, L. Le Meur, A. Algora, M. Lebois, N. Jovančević, K. Rezynkina, S. Jazrawi, A. Blazhev, S. Courtin, M. Bunce, S. Bottoni, P. H. Regan, A. Boso, A. Lopez-Martens, C. Schmitt, B. Fornal, P. Ivanov, B. Wasilewska, L. M. Fraile, F. Ibrahim, M. Babo, T. Kurtukian-Nieto, A. Gottardo, G. Benzoni, T. Kröll, D. Reygadas-Tello, E. Adamska, J. Ljungvall, V. Guadilla, A. Korgul, Y. Popovitch, W. Paulsen, I. Homm, D. Thisse, M. L. Cortés, M. Heine, Fabio Zeiser, C. Delafosse, V. Sánchez-Tembleque, P. Davies, M. Yavachova, S. Ziliani, and D. Etasse
- Subjects
Physics ,Spectrometer ,010308 nuclear & particles physics ,Fission ,Astrophysics::High Energy Astrophysical Phenomena ,Yrast ,Nuclear Theory ,01 natural sciences ,7. Clean energy ,Atomic orbital ,Nuclear fission ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Neutron ,Atomic physics ,Nuclear Experiment ,010306 general physics ,Spin (physics) ,Spectroscopy - Abstract
Prompt and delayed γ -ray spectroscopy of the neutron-rich 94 Kr was performed, as part of the fission campaign at the ALTO facility of the IPN Orsay, using the fast-neutron-induced fission reaction 238 U ( n , f ) in combination with the ν -Ball array, a novel hybrid γ spectrometer for energy and lifetime measurements. Several new yrast and nonyrast transitions were observed for the first time, extending the previously known level scheme. Additionally, we report on the observation of a new short-lived isomer at 3444 keV with a half-life of 32(3) ns. The analysis of the Nilsson orbitals obtained from Gogny cranked Hartree-Fock-Bogoliubov calculations suggests a ( 9 − ) spin and an oblate deformation for this isomer corresponding to a two-quasineutron state, indicating an isomeric structure very similar to that of the neighboring isotones 96 Sr and 92 Se
- Published
- 2020
- Full Text
- View/download PDF
13. Octupole states in Tl207 studied through β decay
- Author
-
István Kuti, A. Turturica, Claes Fahlander, F. Rotaru, Ángel Perea, P. Van Duppen, I. Lazarus, Joonas Konki, H. Grawe, M. Górska, S. Pascu, A. Negret, Raymond J. Carroll, Zs. Podolyák, S. Stegemann, B. A. Brown, J. Phrompao, Miguel Madurga, F. Wearing, D. S. Judson, R. Mărginean, M. Rudigier, P. Greenlees, M. Lund, T. Alexander, S. Lalkovski, H. O. U. Fynbo, Olof Tengblad, S. Ansari, R. Shearman, Natalia Timofeyuk, R.-B. Gerst, V. Vedia, Marc Huyse, E. Rapisarda, J. Kurcewicz, H. De Witte, C. Mihai, M. Brunet, P. M. Walker, P. H. Regan, Edward Simpson, R. Lica, J. R. Cresswell, E.R. Gamba, T. Berry, Enrique Nácher, N. Warr, C. Niţă, Magda Kowalska, A. Gredley, Thierry Stora, A. N. Andreyev, S. M. Judge, L. J. Harkness-Brennan, María José García Borge, C. M. Shand, W. Gelletly, R. D. Page, P. Rahkila, N. Marginean, C. Sotty, Zena Patel, R. E. Mihai, M. Piersa, S. Nae, L. M. Fraile, V. Pucknell, and I. Marroquin
- Subjects
Physics ,Coupling ,010308 nuclear & particles physics ,SHELL model ,State (functional analysis) ,01 natural sciences ,Atomic orbital ,0103 physical sciences ,Atomic physics ,010306 general physics ,10. No inequality ,Nucleon ,Spectroscopy ,Mixing (physics) - Abstract
The β decay of 207Hg into the single-proton-hole nucleus 207Tl has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs−11/2, πd−13/2, and πh−111/2 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t=1 states (t is the number of nucleons breaking the 208Pb core), the effect of t=2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t=0,2,3 excitations is necessary to replicate all t=1 state energies accurately.
- Published
- 2020
- Full Text
- View/download PDF
14. Shell evolution of $N=40$ isotones towards $^{60}$Ca: First spectroscopy of $^{62}$Ti
- Author
-
Masaki Sasano, S. M. Lenzi, Kazuki Yoshida, E. Sahin, V. Wagner, Hiroyoshi Sakurai, F. Nowacki, T. Isobe, W. Rodriguez, P. Doornenbal, Donghang Yan, D. Kim, T. Motobayashi, M.L. Cortés, Jason D. Holt, V. Lapoux, D. M. Rossi, Toshio Kobayashi, F. Flavigny, A. Giganon, B. D. Linh, F. Château, V. Panin, H. Baba, N. Paul, L. X. Chung, D. Calvet, X. X. Xu, David Steppenbeck, V. Werner, Igor Gašparić, H. N. Liu, A. Delbart, Yosuke Kondo, Si-Ge Chen, L. Achouri, Julien Gibelin, Tomohiro Uesaka, J. M. Gheller, A. Corsi, S. R. Stroberg, Alfredo Poves, Achim Schwenk, Satoshi Takeuchi, Thomas Aumann, R.-B. Gerst, C. Lehr, Jenny Lee, Yasuhiro Togano, C. Hilaire, Y.L. Sun, P. Koseoglou, Nobuyuki Chiga, K. Yoneda, F. Browne, Victor Vaquero, Yuya Kubota, T. Lokotko, T. Koiwai, Zaihong Yang, Takashi Nakamura, S. Wang, J. Simonis, I. Murray, Javier Fernandez Menendez, A. Obertelli, Kazuyuki Ogata, A. Gillibert, H. Toernqvist, M. MacCormick, Masahiro Yasuda, Hideaki Otsu, K. I. Hahn, L. Stuhl, O. Aktas, Hirofumi Yamada, Dóra Sohler, S. Franchoo, Tomás R. Rodríguez, L. Zanetti, K. Moschner, Kathrin Wimmer, S. Y. Park, P. A. Söderström, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), UAM. Departamento de Física Teórica, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), RIKEN Nishina Center for Accelerator-Based Science, Japan Society for the Promotion of Science, Ministerio de Ciencia, Innovación y Universidades (España), Ministry of Science and Technology of Vietnam, Helmholtz International Center for FAIR, Croatian Science Foundation, National Research, Development and Innovation Office (Hungary), Ministerio de Economía y Competitividad (España), National Research Foundation of Korea, European Commission, Natural Sciences and Engineering Research Council of Canada, Federal Ministry of Education and Research (Germany), and National Research Council of Canada
- Subjects
Nuclear and High Energy Physics ,Nuclear Theory ,Ab initio ,FOS: Physical sciences ,Shell evolution ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Radioactive beams ,Gamma-ray spectroscopy ,Nuclear Theory (nucl-th) ,0103 physical sciences ,ddc:530 ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Spectroscopy ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Island of inversion ,Isotone ,Starke Wechselwirkung und exotische Kerne – Abteilung Blaum ,Física ,lcsh:QC1-999 ,Excited state ,Quadrupole ,Atomic physics ,Nucleon ,Ground state ,lcsh:Physics - Abstract
7 pags., 4 figs., 1 tab., Excited states in the N=40 isotone Ti were populated via the V(p,2p)Ti reaction at ∼200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using γ-ray spectroscopy. The energies of the 2 →0 and 4 →2 transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring Cr and Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings. The shell-model calculations for Ti show a dominant configuration with four neutrons excited across the N=40 gap. Likewise, they indicate that the N=40 island of inversion extends down to Z=20, disfavoring a possible doubly magic character of the elusive Ca., We thank the RIKEN Nishina Center accelerator staff and the Bi-gRIPS team for the stable operation of the high-intensity Zn beam and for the preparation of the secondary beam setting. K.O. ac-knowledges the support by Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS) JP16K05352. A.P. is supported in part by the Ministerio de Ciencia, Innovación y Universidades (Spain), Severo Ochoa Programme SEV-2016-0597 and grant PGC-2018-94583. F.B. is supported by the RIKEN Spe-cial Postdoctoral Researcher Program. L.X.C. and B.D.L. would like to thank the Vietnam Ministry of Science and Technology (MOST) for its support through the Physics Development Program Grant No. ÐTÐLCN.25/18. I.G. has been supported by HIC for FAIR and Croatian Science Foundation under projects no. 1257 and 7194. D. So. was supported by the the European Regional Develop-ment Fund contract No. GINOP-2.3.3-15-2016-00034 and the National Research, Development and Innovation Fund of Hungary via Project No. K128947. V.V. acknowledges support from the Span-ish Ministerio de Economía y Competitividad under Contract No. FPA2017-84756-C4-2-P. K.I.H., D.K. and S.Y.P. acknowledge the sup-port from the National Research Foundation of Korea grant No. 2018R1A5A1025563 and 2019M7A1A1033186. The development of MINOS was supported by the European Research Council through the ERC Grant No. MINOS-258567. This work was also supported by the JSPS KAKENHI Grant No. 18K03639, MEXT as “Priority is-sue on post-K computer” (Elucidation of the fundamental laws and evolution of the universe), the Joint Institute for Computational Fundamental Science (JICFuS), the CNS-RIKEN joint project for large-scale nuclear structure calculations, Natural Sciences and Engineering Research Council (NSERC) of Canada, the Deutsche Forschungsgemeinschaft – Projektnummer 279384907 – SFB 1245, the PRISMA Cluster of Excellence, and the BMBF under Contracts No. 05P18RDFN1 and 05P19RDFN1. TRIUMF receives funding via a contribution through the National Research Council Canada. Com-putations were performed at the Jülich Supercomputing Center (JURECA)
- Published
- 2020
- Full Text
- View/download PDF
15. $\gamma$-ray Spectroscopy of $^{85}$Se Produced in $^{232}$Th Fission
- Author
-
I. Homm, M. Ciemała, Stephan Oberstedt, K. Rezynkina, P. A. Söderström, B. Fornal, A. Lopez-Martens, M. Bunce, V. Vedia, D. Verney, J. N. Wilson, J. Nemer, B. Wasilewska, A. Algora, M. Babo, R. B. Gerst, L. M. Fraile, Y. Popovitch, R. Chakma, T. Kurtukian-Nieto, Ł. W. Iskra, W. Paulsen, E. Adamska, D. Ralet, G. Häfner, M. Piersa, G. Benzoni, M. Rudigier, A. Fijałkowska, A. Blazhev, S. Leoni, D. Reygadas Tello, K. Hauschild, P. H. Regan, M. S. Yavahchova, J. Wiederhold, V. Guadilla, N. Warr, C. Delafosse, C. Schmitt, R.L. Canavan, V. Sánchez-Tembleque, K. Miernik, R. Lozeva, I. Matea, P. Davies, Muriel Fallot, N. Jovančević, S. Bottoni, M. Lebois, N. Cieplicka-Oryńczak, P. Adsley, C. Henrich, G. Tocabens, K. Belvedere, D. Gjestvang, T. Kröll, L. Cortes, C. Sürder, L. Qi, S. M. Collins, D. Etasse, M. Heine, Fabio Zeiser, A. Boso, F. Ibrahim, J. Benito, A. Korgul, J. Ljungvall, D. Thisse, L. Le-meur, A. Gottardo, P. Koseoglou, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Grand Accélérateur National d'Ions Lourds (GANIL), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Spectrometer ,Isotope ,010308 nuclear & particles physics ,Fission ,Yrast ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Aucun ,General Physics and Astronomy ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Excited state ,0103 physical sciences ,Neutron source ,Gamma spectroscopy ,Nuclear Experiment - Abstract
International audience; Excited states in the neutron-rich 85Se nucleus have been studied using for the first time a fast neutron-induced fission of 232Th. The experiment was performed at the ALTO facility of the IPN Orsay. Coupling of the LICORNE directional neutron source with the ν-ball high-resolution γ-ray spectrometer provided unique access to high-spin states in neutron-rich fission fragments from the 232Th(n, f) reaction. A preliminary level scheme of 85Se was established by the analysis of prompt γ–γ–γ coincidences. Identification of the all known yrast states in 85Se is the first step towards studies of more neutron-rich Se isotopes.
- Published
- 2019
- Full Text
- View/download PDF
16. Lifetimes in At211 and their implications for the nuclear structure above Pb208
- Author
-
M. Stoyanova, R.-B. Gerst, J. Jolie, C. Fransen, V. Karayonchev, N. Warr, F. Dunkel, J.-M. Régis, L. Knafla, L. M. Gerhard, C. Müller-Gatermann, A. Esmaylzadeh, A. Blazhev, L. Kornwebel, F. Diel, M. Dannhoff, K. O. Zell, and P. Van Isacker
- Subjects
Physics ,010308 nuclear & particles physics ,Excited state ,0103 physical sciences ,Nuclear structure ,State (functional analysis) ,Tandem accelerator ,Atomic physics ,010306 general physics ,01 natural sciences - Abstract
Lifetimes of excited states in $^{211}\mathrm{At}$ were measured using the electronic $\ensuremath{\gamma}\ensuremath{-}\ensuremath{\gamma}$ fast timing technique. The nucleus of interest was populated in a $^{208}\mathrm{Pb}(^{6}\mathrm{Li},3n)^{211}\mathrm{At}$ fusion-evaporation reaction at the FN Tandem accelerator of the Institute for Nuclear Physics, University of Cologne. The lifetimes of the $17/{2}_{1}^{\ensuremath{-}}$ and $23/{2}_{1}^{\ensuremath{-}}$ states were determined, together with an upper limit for the $13/{2}_{1}^{\ensuremath{-}}$ state. The experimental results are compared to two shell-model calculations, one using a semiempirical interaction for three particles in a single $j=9/2$ shell and the other using the modified Kuo-Herling interaction in a multi-$j$ model space.
- Published
- 2019
- Full Text
- View/download PDF
17. Evolution of E2 strength in the rare-earth isotopes Hf174,176,178,180
- Author
-
D. Bucurescu, I. O. Mitu, Terver Daniel, F. Naqvi, S. Pascu, Ralitsa Ilieva, R. Lica, C. R. Nita, C. Mihai, N. Cooper, Raymond J. Carroll, S. Stegemann, N. Florea, R-B. Gerst, J. Wiederhold, L. A. Gurgi, V. Werner, D. Ghita, R. Kern, R. Mărginean, M. Rudigier, P. H. Regan, N. Marginean, Norbert Pietralla, D. M. Filipescu, and J. Jolie
- Subjects
Physics ,Scintillation ,Isotope ,010308 nuclear & particles physics ,Yrast ,Rare earth ,Coulomb excitation ,7. Clean energy ,01 natural sciences ,13. Climate action ,Excited state ,Neutron number ,0103 physical sciences ,Neutron ,Atomic physics ,010306 general physics - Abstract
Mean lifetimes of yrast states of the isotopes 174,176,178,180Hf have been measured using fast- electronic scintillation timing. Excited states of 74,176,178Hf were populated via β decay, while 180Hf was populated via Coulomb excitation. The lifetimes of the 2+ 1 and 4+ 1 states of all isotopes and the lifetimes of the 6+ 1 states of 174,178Hf were measured, using the slope and the centroid shift methods. The mean lifetime, τ (4+ 1 ) = 85(13) ps, of 178Hf has been determined for the first time. In addition, the mean lifetimes of the 2− 1 and the 3− 1 states of 176Hf have been determined. Systematic uncertainties on the evolution of data as a function of neutron number were reduced by using the same setup for all the isotopes of interest. The data are in agreement with other recent lifetime measurements where available and shows a shift of the maximum of collectivity for the Hf isotopic chain from neutron midshell at N = 104 to N = 100.
- Published
- 2019
- Full Text
- View/download PDF
18. Reduced γ–γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr3(Ce) detectors
- Author
-
S. Ansari, S. Stegemann, V. Karayonchev, R.-B. Gerst, J. Jolie, M. Rudigier, C. Fransen, A. Esmaylzadeh, M. Dannhoff, N. Saed-Samii, J.-M. Régis, and C. Müller-Gatermann
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Analogue electronics ,010308 nuclear & particles physics ,business.industry ,Detector ,Centroid ,Constant fraction discriminator ,01 natural sciences ,Amplitude ,Optics ,Excited state ,0103 physical sciences ,010306 general physics ,business ,Instrumentation ,Energy (signal processing) - Abstract
The electronic γ–γ fast-timing technique using arrays consisting of many LaBr3(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ–γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ–γ time walk of a fast-timing array consisting of 8 LaBr3(Ce) detectors was measured using a standard 152Eu γ-ray source for the energy region of 40–1408 keV. The data were acquired using a “multiplexed-start and multiplexed-stop” analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr3(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of 60Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ–γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum “time-walk adjustment” needed for detector output pulses with amplitudes smaller than 400 mV.
- Published
- 2016
- Full Text
- View/download PDF
19. Spectroscopy of neutron-rich scandium isotopes
- Author
-
A. Delbart, T. Motobayashi, L. Zanetti, Julien Gibelin, Tomohiro Uesaka, T. Kobayashi, X. X. Xu, H. Toernqvist, Si-Ge Chen, P. A. Söderström, S. Wang, F. Flavigny, A. Obertelli, V. Wagner, M. Lettmann, D. Calvet, J. M. Gheller, T. Isobe, A. Giganon, F. Château, Thomas Aumann, Makoto Yasuda, Victor Vaquero, A. Gillibert, V. Panin, L. X. Chung, E. Sahin, S. Y. Park, T. Lokotko, Duo Yan, P. Doornenbal, K. Moschner, M. MacCormick, C. Hilaire, Kathrin Wimmer, Alessandra Corsi, Satoshi Takeuchi, Takashi Nakamura, R.-B. Gerst, B. D. Linh, M. L. Cortés, S. Franchoo, Igor Gašparić, H. N. Liu, K. Yoneda, C. Lehr, Jenny Lee, F. Browne, Yuya Kubota, Masaki Sasano, N. Paul, D. M. Rossi, V. Werner, Yasuhiro Togano, Yosuke Kondo, H. Baba, N. L. Achouri, Hideaki Otsu, Hirofumi Yamada, Y. L. Sun, Dong-Wook Kim, O. Aktas, V. Lapoux, Zaihong Yang, I. Murray, K. I. Hahn, David Steppenbeck, L. Stuhl, W. Rodriguez, Nobuyuki Chiga, T. Koiwai, Norbert Pietralla, D. Sohler, P. Koseoglou, Hiroyoshi Sakurai, RIKEN Nishina Center for Accelerator-Based Science, Technische Universität Darmstadt, Helmholtz Centre for Heavy Ion Research, Federal Ministry of Education and Research (Germany), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,History ,Isotope ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,chemistry.chemical_element ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,Computer Science Applications ,Education ,International school ,Neutron physics ,Nuclear physics ,chemistry ,0103 physical sciences ,Physics::Accelerator Physics ,ddc:530 ,Neutron ,Scandium ,Nuclear Experiment ,010306 general physics ,Spectroscopy - Abstract
7 pags., 7 figs. -- XXIII International School on Nuclear Physics, Neutron Physics and Applications 22-28 September 2019, Varna, Bulgaria, Within the SEASTAR III campaign at the Radioactive Isotope Beam Factory, at the RIKEN Nishina Center, neutron-rich isotopes in the vicinity of 53K were produced from the fragmentation of the primary 70Zn beam on a 9Be target. After nucleon knockout reactions on the secondary liquid hydrogen MINOS target the known γ rays of the neutron-rich 55Sc isotope were observed (shown in this proceedings) and γ rays from 57,59Sc isotopes have been identified for the first time. The evolution of the occupied nucleon orbitals of these nuclei in the ground and excited state is investigated under the prism of the tensor force., We are grateful to the RIKEN Nishina Center accelerator staff for their work in the primary beam delivery and the BigRIPS team for preparing the secondary beams. This work was supported by the cooperation between TU Darmstadt and the GSI Helmholtz Center for Heavy Ion Research, by the Helmholtz Graduate School for Hadron and Ion Research for FAIR and its abroad program and the BMBF under grant No. 05P19RDFN1. D.S. was supported by projects No. GINOP2.3.3-15-2016-00034 and No. K128947.
- Published
- 2020
- Full Text
- View/download PDF
20. Spectroscopy of Neutron Induced Reactions with the $\nu $-ball Spectrometer
- Author
-
S. Bottoni, M. Lebois, L. Qi, D. Reygadas Tello, R. Shearman, I. Homm, R. B. Gerst, J. N. Wilson, T. Kröll, D. Verney, A. Boso, A. Oberstedt, I. Matea, P. Koseoglou, P. A. Söderström, M. Babo, G. Häfner, M. Piersa, D. Thisse, B. Fornal, M. Rudigier, V. Sanchez, J. Wiederhold, C. Henrich, P. H. Regan, A. Lopez-Martens, F. Ibrahim, K. Miernik, J. Ljungvall, N. Cieplicka-Oryńczak, M. Diakaki, P. Inavov, A. Algora, C. Delafosse, N. Warr, G. Tocabens, J. Benito Garcia, K. Belvedere, S. Leoni, Y. Popovitch, Muriel Fallot, J. Nemer, K. Rezynkina, W. Paulson, C. Sürder, M. Bunce, D. Gestvang, D. Knezevic, V. Guadilla-Gomez, K. Hauschild, Zs. Podolyák, L. Cortes, D. Ralet, A. Gottardo, A. Dragic, E. Adamska, G. Benzoni, R. Lozeva, R. Chakma, N. Jovančević, S. Oberstedt, R. Canavan, F. Adsley, P. Davies, M. Yavachova, C. Schmitt, M. Heine, Fabio Zeiser, D. Etasse, L. M. Fraile, T. Kurtukian-Nieto, A. Blazhev, L. Iskra, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Paris-Saclay, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
- Subjects
Physics ,education.field_of_study ,Spectrometer ,010308 nuclear & particles physics ,Fission ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,Aucun ,General Physics and Astronomy ,Shields ,chemistry.chemical_element ,Germanium ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,chemistry ,0103 physical sciences ,Neutron source ,Neutron ,Atomic physics ,010306 general physics ,education ,Spectroscopy ,Nuclear Experiment - Abstract
The ʋ-ball is a high-efficiency hybrid spectrometer which consists of both germanium (Ge) detectors and associated anti-Compton BGO shields, coupled to lanthanum bromide (LaBr3) detectors. The hybrid configuration provides a combination of both excellent energy and timing resolutions. The ʋ-ball geometry allows the coupling with the LICORNE directional neutron source at the ALTO facility of the IPN, Orsay. This opens the possibility to perform precise spectroscopy of neutron induced reactions and was used for two experiments during the recent experimental campaign. These two experiments are described here: 1. Spectroscopy of the neutron-rich fission fragments produced in the 238U(n; f) and 232Th(n; f) reactions; 2. Spectroscopy above the shape isomer in 238U. The 238U(n; f) and 232Th(n; f) reactions produce hundreds of neutron-rich nuclei on which gamma-ray spectroscopy can be performed. The main goal of the experiment aiming to populate the shape isomer in 238U is the measurement of the gamma-ray and fission decay branches as well as determination of level scheme in the super-deformed minimum. The shape isomer is populated by 238U(n; n') reaction, which gives a very advantageous population cross section over other reactions. More detailed descriptions of these two ʋ-ball experiments will be presented here.
- Published
- 2019
- Full Text
- View/download PDF
21. Restoration of the natural E(1/21+) - E(3/21+) energy splitting in odd-K isotopes towards N = 40
- Author
-
David Steppenbeck, B. D. Linh, H. Törnqvist, Igor Gašparić, H. N. Liu, Kazuki Yoshida, Yosuke Kondo, Toshio Kobayashi, P. A. Söderström, K. Yoneda, N. Paul, Carlo Barbieri, S. Y. Park, D. M. Rossi, V. Lapoux, Donghang Yan, H. Baba, K. Moschner, Masaki Sasano, V. Werner, Yutaka Utsuno, Yoshiki Chazono, S. Wang, D. Sohler, Zaihong Yang, I. Murray, K. I. Hahn, L. Stuhl, Kathrin Wimmer, Jenny Lee, J. M. Gheller, Victor Vaquero, R.-B. Gerst, Takaharu Otsuka, F. Browne, A. Obertelli, Nobuyuki Chiga, D. Calvet, T. Isobe, Hiroyoshi Sakurai, T. Koiwai, Yuya Kubota, C. Hilaire, T. Motobayashi, F. Nowacki, F. Château, A. Delbart, C. Lehr, A. Gillibert, M. MacCormick, Julien Gibelin, A. Corsi, X. X. Xu, V. Panin, M. L. Cortés, Thomas Aumann, O. Aktas, S. Franchoo, Si-Ge Chen, L. X. Chung, L. Zanetti, A. Giganon, Francesco Raimondi, Hideaki Otsu, Hirofumi Yamada, Tomohiro Uesaka, W. Rodriguez, F. Flavigny, Yasuhiro Togano, T. Lokotko, E. Sahin, N.L. Achouri, Y.L. Sun, Takashi Nakamura, Petr Navrátil, P. Doornenbal, Thomas Duguet, V. Wagner, Satoshi Takeuchi, D. Kim, V. Somà, Masahiro Yasuda, Kazuyuki Ogata, and P. Koseoglou
- Subjects
Physics ,Nuclear and High Energy Physics ,Chemical substance ,Isotope ,010308 nuclear & particles physics ,SHELL model ,01 natural sciences ,Vertex (geometry) ,Ab initio quantum chemistry methods ,Excited state ,0103 physical sciences ,Atomic physics ,010306 general physics ,Nucleon ,Spectroscopy - Abstract
We report on the first γ-ray spectroscopy of 51,53K produced via the 52,54Ca(p,2p) reactions at ∼250 MeV/nucleon. Unambiguous final-state angular-momentum assignments were achieved for beam intensities down to few particles per second by using a new technique based on reaction vertex tracking combined with a thick liquid-hydrogen target. Through γ-ray spectroscopy and exclusive parallel momentum distribution analysis, 3/2+ ground states and 1/2+ first excited states in 51,53K were established quantifying the natural ordering of the 1 d 3 / 2 and 2 s 1 / 2 proton-hole states that are restored at N = 32 and 34. State-of-the-art ab initio calculations and shell-model calculations with improved phenomenological effective interactions reproduce the present data and predict consistently the increase of the E(1/2 1 + ) - E(3/2 1 + ) energy differences towards N = 40.
- Published
- 2020
- Full Text
- View/download PDF
22. Evolution of collectivity in the N=100 isotones near Yb170
- Author
-
V. Karayonchev, K. O. Zell, F. Diel, A. Esmaylzadeh, R. Altenkirch, M. Dannhoff, R.-B. Gerst, C. Müller-Gatermann, N. Warr, J. Jolie, S. Stegemann, J.-M. Régis, K. Moschner, N. Saed-Samii, A. Blazhev, S. Ansari, and C. Fransen
- Subjects
Physics ,010308 nuclear & particles physics ,Yrast ,0103 physical sciences ,Isotonic ,Centroid ,Atomic physics ,010306 general physics ,01 natural sciences ,Measure (mathematics) - Abstract
An experiment using the electronic gamma - gamma fast-timing technique was performed to measure lifetimes of the yrast states in Yb-170. The lifetime of the yrast 2(+) state was determined using the slope method. The value of t = 2.33(3) ns is in good agreement with the lifetimes measured using other techniques. The lifetimes of the first 4(+) and 6(+) states are determined using the generalized centroid difference method. The derived B(E2) values are compared to calculations done using the confined beta soft model and show good agreement with the experimental values. These calculations were extended to the isotonic chain N = 100 around Yb-170 and show a good quantitative description of the collectivity observed along it.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.