1. Circulation and Energy Theorem Preserving Stochastic Fluids
- Author
-
Theodore D. Drivas, Darryl D. Holm, and Engineering & Physical Science Research Council (EPSRC)
- Subjects
Class (set theory) ,General Mathematics ,math-ph ,FOS: Physical sciences ,Fluid models ,01 natural sciences ,0101 Pure Mathematics ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,math.MP ,Mathematics - Analysis of PDEs ,Variational principle ,0102 Applied Mathematics ,0103 physical sciences ,FOS: Mathematics ,Applied mathematics ,Incompressible euler equations ,0101 mathematics ,math.AP ,Mathematical Physics ,Mathematics ,010102 general mathematics ,Fluid Dynamics (physics.flu-dyn) ,Mathematical Physics (math-ph) ,Physics - Fluid Dynamics ,Dissipation ,physics.flu-dyn ,Circulation (fluid dynamics) ,Fluid equation ,Energy (signal processing) ,Analysis of PDEs (math.AP) - Abstract
Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier-Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin-Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler-Poincar\'{e} and stochastic Navier-Stokes-Poincar\'{e} equations respectively. The stochastic Euler-Poincar\'{e} equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems., Comment: 26 pages
- Published
- 2019
- Full Text
- View/download PDF