1. Proton-$\rm ^3He$ elastic scattering at intermediate energies
- Author
-
Y. Inoue, Kimiko Sekiguchi, Shinichi Ishikawa, Kotaro Nonaka, T. Ino, Makoto Watanabe, D. T. Tran, H. Kanda, T. Mukai, S. Nakai, S. Goto, K. Kawahara, Daiki Inomoto, Atsushi Taketani, Y. Hirai, Kenjiro Miki, A. Deltuva, H. Oshiro, H. Kon, Nobuyuki Kobayashi, Hooi Jin Ong, S. Shibuya, M. Itoh, Atsushi Tamii, Y. Otake, Yukie Maeda, D. Sakai, H. Umetsu, Yuta Utsuki, Tomotsugu Wakasa, T. Taguchi, S. Mitsumoto, Y. Shiokawa, Yasuo Wakabayashi, S. N. Nakamura, Minami Inoue, D. Etoh, Hideyuki Sakai, Hina Kasahara, Kichiji Hatanaka, T. Akieda, T. Wakui, Y. Wada, A. Inoue, and A. Watanabe
- Subjects
Physics ,Elastic scattering ,Nuclear Theory ,Proton ,010308 nuclear & particles physics ,Scattering ,Binding energy ,FOS: Physical sciences ,01 natural sciences ,Nuclear physics ,Nuclear Theory (nucl-th) ,Cross section (physics) ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Scaling ,Excitation ,Spin-½ - Abstract
We present a precise measurement of the cross section, proton and $\rm ^3He$ analyzing powers, and spin correlation coefficient $C_{y,y}$ for $p$-$\rm ^3He$ elastic scattering near 65 MeV, and a comparison with rigorous four-nucleon scattering calculations based on realistic nuclear potentials and a model with $\Delta$-isobar excitation. Clear discrepancies are seen in some of the measured observables in the regime around the cross section minimum. Theoretical predictions using scaling relations between the calculated cross section and the $\rm ^3 He$ binding energy are not successful in reproducing the data. Large sensitivity to the $NN$ potentials and rather small $\Delta$-isobar effects in the calculated cross section are noticed as different features from those in the deuteron-proton elastic scattering. The results obtained above indicate that $p$-$\rm ^3He$ scattering at intermediate energies is an excellent tool to explore nuclear interactions not accessible by three-nucleon scattering., Comment: 22 pages, 6 figures
- Published
- 2021
- Full Text
- View/download PDF