1. A cryogenic silicon interferometer for gravitational-wave detection
- Author
-
C. I. Torrie, J. Hennig, Chunnong Zhao, D. Heinert, D. H. Reitze, Frances Hellman, Manel Molina-Ruiz, Jessica Steinlechner, G. M. Harry, G. I. McGhee, A. S. Silva, Benno Willke, H. Cao, Denis Martynov, Odylio D. Aguiar, I. W. Martin, B. J. J. Slagmolen, D. D. Brown, V. P. Mitrofanov, A. Cumming, B. Shapiro, D. P. Kapasi, Slawomir Gras, S. W. S. Ng, H. Yamamoto, Riccardo Bassiri, B. Lantz, J. C. Mills, A. C. Green, A. S. Markosyan, K. Kuns, D. C. Coyne, Hartmut Grote, R. L. Ward, Roman Schnabel, F. Magaña-Sandoval, Rana X. Adhikari, P. G. Murray, M. Schneewind, G. L. Mansell, Roger K. Route, R. T. DeRosa, J. H. Hough, Isobel M. Romero-Shaw, Thomas Corbitt, B. Barr, M. van Veggel, G. S. Wallace, Peter Wessels, Stefan Hild, G. Eddolls, Sheila Rowan, C. C. Wipf, J. Eichholz, P. J. Veitch, Frank Seifert, M. A. Okada, G. D. Hammond, E. C. Ferreira, K. A. Strain, K. Haughian, V. Quetschke, R. M. Martin, Martin M. Fejer, J. R. Smith, D. B. Tanner, P. A. Altin, M. Korobko, A. R. Wade, C. M. Mow-Lowry, Koji Arai, A. F. Brooks, E. J. Daw, E. Bonilla, Andreas Freise, V. V. Frolov, Kentaro Komori, Z. Tornasi, Jan Harms, M. Constancio, J. H. Briggs, Nicholas Smith, David E. McClelland, S. J. Cooper, D. Taira, D. H. Shoemaker, S. Leavey, G. Billingsley, Robert L. Byer, Stuart Reid, Lisa Barsotti, Daniel A. Shaddock, Brittany Kamai, E. K. Gustafson, Matthias H. Hennig, Jonathan Richardson, A. S. Bell, D. V. Koptsov, R. Robie, Matthew Evans, J. V. Vanheijningen, M. J. Yap, R. Birney, A. Markowitz, Rainer Weiss, W. W. Johnson, David Blair, M. C. Heintze, E. D. Hall, Jesper Munch, W. Z. Korth, Terry G. McRae, L. G. Prokhorov, S. C. Tait, David J. Ottaway, Grav. waves and fundamental physics, and RS: FSE Grav. waves and fundamental physics
- Subjects
Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,POWER ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,Gravitational-wave astronomy ,LOW-TEMPERATURES ,General Relativity and Quantum Cosmology ,NOISE ,SINGLE-FREQUENCY ,Binary black hole ,Observatory ,0103 physical sciences ,RADIATION-PRESSURE ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Physics ,010308 nuclear & particles physics ,Gravitational wave ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Instrumentation and Detectors (physics.ins-det) ,two micron lasers ,interferometry ,PERFORMANCE ,LIGO ,Universe ,Interferometry ,REDUCTION ,cryogenic silicon ,SQUEEZED STATES ,OPTICAL-ABSORPTION ,binary black holes ,next generation gravitational wave detection ,gravitational wave astronomy ,SENSITIVITY ,Astrophysics - Instrumentation and Methods for Astrophysics ,Event (particle physics) - Abstract
© 2020 IOP Publishing Ltd. The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor.
- Published
- 2020