1. Positional stability and radial dynamics of sonoluminescent bubbles under bi-harmonic driving: Effect of the high-frequency component and its relative phase
- Author
-
Damián Dellavale, Fabián J. Bonetto, and Juan Manuel Rosselló
- Subjects
Work (thermodynamics) ,Acoustics and Ultrasonics ,Field (physics) ,02 engineering and technology ,Viscous liquid ,01 natural sciences ,Instability ,SONOLUMINESCENCE (SBSL) ,purl.org/becyt/ford/1 [https] ,Inorganic Chemistry ,Sonoluminescence ,0103 physical sciences ,43.35.HL ,Chemical Engineering (miscellaneous) ,Environmental Chemistry ,Radiology, Nuclear Medicine and imaging ,010306 general physics ,Physics ,POSITIONAL INSTABILITY ,BI-HARMONIC DRIVING ,Organic Chemistry ,43.25.YW ,RELATIVE PHASE 78.60.MQ ,purl.org/becyt/ford/1.3 [https] ,Mechanics ,Radius ,BJERKNES FORCE ,021001 nanoscience & nanotechnology ,Harmonics ,Harmonic ,0210 nano-technology - Abstract
The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAcHF) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAcHF on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved. Fil: Rosselló, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). Laboratorio Cavitación y Biotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Dellavale Clara, Hector Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina Fil: Bonetto, Fabian Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Energía Nuclear. Gerencia de Ingeniería Nuclear (CAB). Laboratorio Cavitación y Biotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
- Published
- 2016
- Full Text
- View/download PDF