1. Review of Bayesian selection methods for categorical predictors using JAGS
- Author
-
Éric Parent, Christine Hatté, Rana Jreich, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Géochrononologie Traceurs Archéométrie (GEOTRAC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Mathématiques et Informatique Appliquées (MIA-Paris), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-AgroParisTech-Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Informatique Appliquées (MIA Paris-Saclay), and AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Statistics and Probability ,Bayesian selection methods ,Computer science ,Bayesian probability ,categorical predictors ,0211 other engineering and technologies ,Binary number ,Feature selection ,Review Article ,02 engineering and technology ,Machine learning ,computer.software_genre ,Bayesian inference ,01 natural sciences ,010104 statistics & probability ,JAGS ,0101 mathematics ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Categorical variable ,parsity ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,021103 operations research ,business.industry ,spike and slab priorss ,Statistics::Computation ,Variable (computer science) ,fusion regression effects ,Selection method ,Artificial intelligence ,Statistics, Probability and Uncertainty ,business ,computer - Abstract
International audience; The formulation of variable selection has been widely developed in the Bayesian literature by linking a random binary indicator to each variable. This Bayesian inference has the advantage of stochastically exploring the set of possible sub-models, whatever their dimension. Bayesian selection approaches, appropriate for categorical predictors, are generally beyond the scope of the standard Bayesian selection of regressors in the linear model since all levels of a categorical variable should be jointly handled in the selection procedure. For categorical covariates, new strategies have been developed to detect the effect of grouped covariates rather than the single effect of a quantitative regressor. In this paper, we review three Bayesian selection methods for categorical predictors: Bayesian Group Lasso with Spike and Slab priors, Bayesian Sparse Group Selection and Bayesian Effect Fusion using model-based clustering. The motivation behind this paper is to provide detailed information about the implementation of the three Bayesian selection methods mentioned above, appropriate for categorical predictors, using the JAGS software. Selection performance and sensitivity analysis of the hyperparameters tuning for prior specifications are assessed under various simulated scenarios. JAGS helps user implement these three Bayesian selection methods for more complex model structures such as hierarchical ones with latent layers.
- Published
- 2021
- Full Text
- View/download PDF