1. Graph immersions with parallel cubic form
- Author
-
Roland Hildebrand, Données, Apprentissage et Optimisation (DAO), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Calculs Algébriques et Systèmes Dynamiques (CASYS), and Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Mathematics - Differential Geometry ,parallel cubic form ,Jordan algebras ,affine differential geometry ,01 natural sciences ,graph immersion ,cubic form ,Combinatorics ,0103 physical sciences ,Immersion (mathematics) ,FOS: Mathematics ,Cubic form ,0101 mathematics ,Mathematics ,Connected component ,Jordan algebra ,improper affine hyperspheres ,graph immersions ,010102 general mathematics ,Complete graph ,MSC 53A15, 17C36, 17C37 ,MSC 53A15 ,Nilpotent ,Hypersurface ,Computational Theory and Mathematics ,Differential Geometry (math.DG) ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,53A15, 17C36, 17C37 ,010307 mathematical physics ,Geometry and Topology ,Affine transformation ,Mathematics::Differential Geometry ,Analysis - Abstract
We consider non-degenerate graph immersions into affine space $\mathbb A^{n+1}$ whose cubic form is parallel with respect to the Levi-Civita connection of the affine metric. There exists a correspondence between such graph immersions and pairs $(J,\gamma)$, where $J$ is an $n$-dimensional real Jordan algebra and $\gamma$ is a non-degenerate trace form on $J$. Every graph immersion with parallel cubic form can be extended to an affine complete symmetric space covering the maximal connected component of zero in the set of quasi-regular elements in the algebra $J$. It is an improper affine hypersphere if and only if the corresponding Jordan algebra is nilpotent. In this case it is an affine complete, Euclidean complete graph immersion, with a polynomial as globally defining function. We classify all such hyperspheres up to dimension 5. As a special case we describe a connection between Cayley hypersurfaces and polynomial quotient algebras. Our algebraic approach can be used to study also other classes of hypersurfaces with parallel cubic form., Comment: some proofs have been simplified with respect to the first version
- Published
- 2021
- Full Text
- View/download PDF