1. A Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic
- Author
-
Brian Hill, Francesca Poggiolesi, Groupement de Recherche et d'Etudes en Gestion à HEC (GREGH), Ecole des Hautes Etudes Commerciales (HEC Paris)-Centre National de la Recherche Scientifique (CNRS), Vrije Universiteit Brussel (VUB), Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Université Paris 1 Panthéon-Sorbonne (UP1)-Département d'Etudes Cognitives - ENS Paris (DEC), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Contraction-free ,Propositional Dynamic Logic ,Logic ,Cut-elimination theorem ,Zeroth-order logic ,0102 computer and information sciences ,01 natural sciences ,History and Philosophy of Science ,Proof calculus ,[SHS.ECO.ECO]Humanities and Social Sciences/Economics and Finance/domain_shs.eco.eco ,Computer Science::Logic in Computer Science ,Tree-hypersequent ,Calculus ,[INFO]Computer Science [cs] ,Sequent ,0101 mathematics ,Mathematics ,Propositional variable ,Discrete mathematics ,Natural deduction ,010102 general mathematics ,Noncommutative logic ,Proof theory ,[SHS.PHIL]Humanities and Social Sciences/Philosophy ,Sequent calculus ,Mathematics::Logic ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,010201 computation theory & mathematics ,TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS ,Cut-free - Abstract
International audience; In this paper we present a sequent calculus for propositional dynamic logic built using an enriched version of the tree-hypersequent method and including an infini-tary rule for the iteration operator. We prove that this sequent calculus is theoremwise equivalent to the corresponding Hilbert-style system, and that it is contraction-free and cut-free. All results are proved in a purely syntactic way.
- Published
- 2010