1. Splittable Routing Games in Ring Topology with Losses
- Author
-
Dallali, Sami, Fontaine, Clara, Altman, Eitan, CentraleSupélec, Computer Systems Lab - School of Electrical and Computer Engineering - Cornell University (CSL), Cornell University [New York], Cornelle University, Network Engineering and Operations (NEO ), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), LIA, Laboratory of Information, Network and Communication Sciences (LINCS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU), National University of Singapore (NUS), Laboratoire Informatique d'Avignon (LIA), and Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
- Subjects
TheoryofComputation_MISCELLANEOUS ,010104 statistics & probability ,0209 industrial biotechnology ,020901 industrial engineering & automation ,[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,Ring topology ,02 engineering and technology ,0101 mathematics ,Routing games ,01 natural sciences ,Loss probabilities - Abstract
International audience; We consider a splittable atomic game with lossy links on a ring in which the cost that each player i minimizes is their own loss rate of packets. The costs are therefore non-additive (unlike costs based on delays or tolls) and moreover, there is no flow conservation (total flow entering a link is greater than the flow leaving it). We derive a closed-form for the equilibrium, which allows us to obtain insight on the structure of the equilibrium. We also derive the globally optimal solution and obtain conditions for the equilibrium to coincide with the globally optimal solution.
- Published
- 2021
- Full Text
- View/download PDF