1. A tunable and unidirectional one-dimensional electronic system Nb2n+1Si n Te4n+2
- Author
-
Nan Xu, You Guo Shi, Shengyuan A. Yang, Hao Zheng, Si Li, Hao Ke Xu, Yugui Yao, Xu Yang, Yaoyi Li, Zhiqiang Mao, Xiao Ang Nie, Canhua Liu, Jin-Feng Jia, Meng Yang, Zhen Zhu, Dandan Guan, and Shiyong Wang
- Subjects
Physics ,Surface (mathematics) ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,lcsh:Atomic physics. Constitution and properties of matter ,01 natural sciences ,Symmetry (physics) ,Semimetal ,Electronic, Optical and Magnetic Materials ,law.invention ,lcsh:QC170-197 ,Chemical physics ,law ,0103 physical sciences ,lcsh:TA401-492 ,lcsh:Materials of engineering and construction. Mechanics of materials ,Scanning tunneling microscope ,010306 general physics ,0210 nano-technology ,Spectroscopy ,Charge density wave ,Electronic systems - Abstract
One dimensional (1D) electronic system is a versatile platform hosting novel physics, such as charge density wave, Su-Schrieffer-Heeger (SSH) topological state and solitons, Tomonaga-Luttinger Liquid etc. Here, we systematically study the surface electronic properties on layered composition-tunable compounds Nb2n+1SinTe4n+2 (n = 1–5), which is predicted to be a nodal-line semimetal when n = 1 (Nb3SiTe6). Via scanning tunneling microscopy/spectroscopy, we observe 1D chains formed on the surface of the compounds. We uncover that with the increasing of n, the distance between the chains becomes larger, and the 1D electronic state is developed in the compounds with n ≥ 3. Our first-principle calculations reveal that the nodal-line in Nb3SiTe6 and the 1D electronic state in the crystals with higher n in fact arise from the same bands, which are protected by the same nonsymmorphic symmetry. Furthermore, we can understand the evolution of the electronic states on these series of compounds with such complicated structures and compositions based on a simple SSH type picture. Our experiment demonstrates a tunable and unidirectional 1D electronic system, which offers a concrete platform for the exploration of intriguing 1D electron physics and will enrich the opportunity for future condensed matter physics, material science and nanotechnology researches.
- Published
- 2020