1. Restocking of Anabarilius grahami in Lake Fuxian, Southwest China: morphological and genetic effects
- Author
-
Fan Wei, Xiaoai Wang, Xiao-Fu Pan, Yuanwei Zhang, and Jun-Xing Yang
- Subjects
0106 biological sciences ,0303 health sciences ,Genetic diversity ,Ecology ,biology ,Zoology ,Minnow ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Hatchery ,Nucleotide diversity ,03 medical and health sciences ,Genetic distance ,biology.animal ,Captive breeding ,Genetic variation ,Animal Science and Zoology ,Anabarilius grahami ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology - Abstract
The restocking of the endangered Kanglang white minnow ( Anabarilius grahami) in Lake Fuxian, China, has been conducted for 13 years. However, few studies have reported on the effectiveness of the captive breeding and release of this species. Here, we investigated variations in morphology, including body shape and skeletal deformities, and genetic features among hatchery-born and recaptured A. grahami from Lake Fuxian. Results showed that current hatchery-reared fish displayed a stubbier body shape than their wild conspecifics from the 1980s. Furthermore, high skeletal deformity ratios were found in two aquafarms (Luchong, 50%; Haikou, 45.2%), and the release of malformed fish elevated the skeletal deformity rate of wild stocks found near the Lake Fuxian release sites (west coast, 19.0%; east coast, 12.5%). Based on variations in the cytochrome b (cyt b) gene, existing A. grahami populations showed relatively high haplotype diversity and low nucleotide diversity. Hatchery populations exhibited reduced genetic variations based on microsatellite markers and reintroduction led to markedly lower genetic diversity around the west coast release sites of Lake Fuxian. Analysis of molecular variance (AMOVA) of cyt b and microsatellite analysis showed that the greatest genetic variations were found within populations, and genetic distance and Bayesian clustering analysis showed that the 14 populations clustered into one group. Based on morphological and genetic tests, we discuss corresponding recommendations, including release size, feed formulations, breeding strategies, and release tags, to minimize potential risks and improve hatchery practices for better restocking of this species.
- Published
- 2020