1. Sub-arcsecond imaging with the International LOFAR Telescope I. Foundational calibration strategy and pipeline
- Author
-
Martin J. Hardcastle, H. Paas, Matthias Hoeft, J. Moldon, R. Pizzo, Arthur Corstanje, A. Kappes, S. Mooney, John McKean, Gottfried Mann, Pietro Zucca, Harvey Butcher, M. Pandey-Pommier, Joseph R. Callingham, A. Nelles, S. Duscha, Marco Iacobelli, Aleksander Shulevski, V. N. Pandey, Ph. Zarka, Annalisa Bonafede, S. Badole, M. Ruiter, Ashish Asgekar, Hanna Rothkaehl, M. P. van Haarlem, P. Kukreti, Wolfgang Reich, Michel Tagger, J. M. Anderson, Marian Soida, A. H. W. M. Coolen, Judith H. Croston, Olaf Wucknitz, Neal Jackson, Heino Falcke, W. N. Brouw, Jochen Eislöffel, Philip Best, A. Drabent, F. Sweijen, F. de Gasperin, Dominik J. Schwarz, Cyril Tasse, J. B. R. Oonk, J. M. Griessmeier, Benedetta Ciardi, S. Damstra, A. J. van der Horst, Stefan J. Wijnholds, C. Groeneveld, E. Jütte, D. Engels, I. M. Avruch, Ralph A. M. J. Wijers, Léon V. E. Koopmans, Timothy W. Shimwell, Emanuela Orru, Andrzej Krankowski, R. J. van Weeren, Leah K. Morabito, A. W. Gunst, I. van Bemmel, D. Venkattu, Mark J. Bentum, Adam T. Deller, Christian Vocks, George K. Miley, John Conway, M. A. Garrett, M. Bondi, Matthias Kadler, E. Bonnassieux, H. J. A. Röttgering, API Other Research (FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), European Commission, European Research Council, Ministerio de Ciencia e Innovación (España), Science and Technology Facilities Council (UK), Astronomy, and Kapteyn Astronomical Institute
- Subjects
Astronomy ,Pipeline (computing) ,active ,Field of view ,Astrophysics ,01 natural sciences ,law.invention ,high angular resolution, radiation mechanisms ,law ,galaxies ,active, galaxies ,010303 astronomy & astrophysics ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrometry ,Interferometry ,Astrophysics - Instrumentation and Methods for Astrophysics ,high angular resolution ,jets ,active [Galaxies] ,media_common.quotation_subject ,galaxies: active ,FOS: Physical sciences ,Telescope ,0103 physical sciences ,Calibration ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Remote sensing ,non-thermal [Radiation mechanisms] ,non-thermal radiation ,010308 nuclear & particles physics ,techniques: high angular resolution ,active galaxies ,Astronomy and Astrophysics ,LOFAR ,radiation mechanisms: non-thermal ,galaxies: jets ,Astrophysics - Astrophysics of Galaxies ,high angular resolution [Techniques] ,non-thermal ,radiation mechanisms ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Sky ,Astrophysics of Galaxies (astro-ph.GA) ,non-thermal, galaxies ,jets, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies ,jets [Galaxies] ,techniques ,jets of galaxies - Abstract
Full list of authors: Morabito, L. K.; Jackson, N. J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; Drabent, A.; Iacobelli, M.; Croston, J. H.; Best, P. N.; Bondi, M.; Callingham, J. R.; Conway, J. E.; Deller, A. T.; Hardcastle, M. J.; McKean, J. P.; Miley, G. K.; Moldon, J.; Röttgering, H. J. A.; Tasse, C.; Shimwell, T. W.; van Weeren, R. J.; Anderson, J. M.; Asgekar, A.; Avruch, I. M.; van Bemmel, I. M.; Bentum, M. J.; Bonafede, A.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Coolen, A.; Damstra, S.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Garrett, M. A.; Griessmeier, J.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; van der Horst, A. J.; Jütte, E.; Kadler, M.; Koopmans, L. V. E.; Krankowski, A.; Mann, G.; Nelles, A.; Oonk, J. B. R.; Orru, E.; Paas, H.; Pandey, V. N.; Pizzo, R. F.; Pandey-Pommier, M.; Reich, W.; Rothkaehl, H.; Ruiter, M.; Schwarz, D. J.; Shulevski, A.; Soida, M.; Tagger, M.; Vocks, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.; Zucca, P., The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ~2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ~1.5° away, while phase solution transferral works well over ~1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ~0.3′′ ×0.2′′ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ~80–300 μJy bm−1 image rms noise, which is dependent on the distance from the phase centre; typical values are ~90 μJy bm−1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ~ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit. © ESO 2022., This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-262 LKM is grateful for support from the Medical Research Council (grant MR/T042842/1). S.M. acknowledges support from the Governmentof Ireland Postgraduate Scholarship Programme. E.B. acknowledges support from the ERC-ERG grant DRANOEL, n.714245. A.D. acknowledges support by the BMBF Verbundforschung under the grant 052020. J.H.C. acknowledges support from the UK Science and Technology Facilities Council (ST/R000794/1). P.N.B. is grateful for support from the UK STFC via grant ST/R000972/1. J.R.C. thanks the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for support via the Talent Programme Veni grant. M.J.H. acknowledges support from the UK Science and Technology Facilities Council (ST/R000905/1). J.P.M. acknowledges support from the NetherlandsOrganization for Scientific Research (NWO, project number 629.001.023) and the Chinese Academy of Sciences (CAS, project number 114A11KYSB20170054). J.M. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísicade Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). R.J.v.W. acknowledges support from the ERC Starting Grant ClusterWeb 804208. D.J.S. acknowledges support by the GermanFederal Ministry for Science and Research BMBF-Verbundforschungsprojekt D-LOFAR 2.0 (grant numbers 05A20PB1). LOFAR (van Haarlem et al. 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK; Ministry of Science and Higher Education, Poland.
- Published
- 2022