22 results on '"Tsutomu Enoki"'
Search Results
2. Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes
- Author
-
TaeOh Kwon, Hideaki Shibata, Sebastian Kepfer-Rojas, Inger K. Schmidt, Klaus S. Larsen, Claus Beier, Björn Berg, Kris Verheyen, Jean-Francois Lamarque, Frank Hagedorn, Nico Eisenhauer, Ika Djukic, TeaComposition Network, Inger Kappel Schmidt, Klaus Steenberg Larsen, Jean Francois Lamarque, Adriano Caliman, Alain Paquette, Alba Gutiérrez-Girón, Alessandro Petraglia, Algirdas Augustaitis, Amélie Saillard, Ana Carolina Ruiz-Fernández, Ana I. Sousa, Ana I. Lillebø, Anderson da Rocha Gripp, Andrea Lamprecht, Andreas Bohner, André-Jean Francez, Andrey Malyshev, Andrijana Andrić, Angela Stanisci, Anita Zolles, Anna Avila, Anna-Maria Virkkala, Anne Probst, Annie Ouin, Anzar A. Khuroo, Arne Verstraeten, Artur Stefanski, Aurora Gaxiola, Bart Muys, Beatriz Gozalo, Bernd Ahrends, Bo Yang, Brigitta Erschbamer, Carmen Eugenia Rodríguez Ortíz, Casper T. Christiansen, Céline Meredieu, Cendrine Mony, Charles Nock, Chiao-Ping Wang, Christel Baum, Christian Rixen, Christine Delire, Christophe Piscart, Christopher Andrews, Corinna Rebmann, Cristina Branquinho, Dick Jan, Dirk Wundram, Dušanka Vujanović, E. Carol Adair, Eduardo Ordóñez-Regil, Edward R. Crawford, Elena F. Tropina, Elisabeth Hornung, Elli Groner, Eric Lucot, Esperança Gacia, Esther Lévesque, Evanilde Benedito, Evgeny A. Davydov, Fábio Padilha Bolzan, Fernando T. Maestre, Florence Maunoury-Danger, Florian Kitz, Florian Hofhansl, Flurin Sutter, Francisco de Almeida Lobo, Franco Leadro Souza, Franz Zehetner, Fulgence Kouamé Koffi, Georg Wohlfahrt, Giacomo Certini, Gisele Daiane Pinha, Grizelle González, Guylaine Canut, Harald Pauli, Héctor A. Bahamonde, Heike Feldhaar, Heinke Jäger, Helena Cristina Serrano, Hélène Verheyden, Helge Bruelheide, Henning Meesenburg, Hermann Jungkunst, Hervé Jactel, Hiroko Kurokawa, Ian Yesilonis, Inara Melece, Inge van Halder, Inmaculada García Quirós, István Fekete, Ivika Ostonen, Jana Borovská, Javier Roales, Jawad Hasan Shoqeir, Jean-Christophe Lata, Jean-Luc Probst, Jeyanny Vijayanathan, Jiri Dolezal, Joan-Albert Sanchez-Cabeza, Joël Merlet, John Loehr, Jonathan von Oppen, Jörg Löffler, José Luis Benito Alonso, José-Gilberto Cardoso-Mohedano, Josep Peñuelas, Joseph C. Morina, Juan Darío Quinde, Juan J. Jiménez, Juha M. Alatalo, Julia Seeber, Julia Kemppinen, Jutta Stadler, Kaie Kriiska, Karel Van den Meersche, Karibu Fukuzawa, Katalin Szlavecz, Katalin Juhos, Katarína Gerhátová, Kate Lajtha, Katie Jennings, Katja Tielbörger, Kazuhiko Hoshizaki, Ken Green, Klaus Steinbauer, Laryssa Pazianoto, Laura Dienstbach, Laura Yahdjian, Laura J. Williams, Laurel Brigham, Lee Hanna, Liesbeth van den Brink, Lindsey Rustad, Lourdes Morillas, Luciana Silva Carneiro, Luciano Di Martino, Luis Villar, Luísa Alícida Fernandes Tavares, Madison Morley, Manuela Winkler, Marc Lebouvier, Marcello Tomaselli, Marcus Schaub, Maria Glushkova, Maria Guadalupe Almazan Torres, Marie-Anne de Graaff, Marie-Noëlle Pons, Marijn Bauters, Marina Mazón, Mark Frenzel, Markus Wagner, Markus Didion, Maroof Hamid, Marta Lopes, Martha Apple, Martin Weih, Matej Mojses, Matteo Gualmini, Matthew Vadeboncoeur, Michael Bierbaumer, Michael Danger, Michael Scherer-Lorenzen, Michal Růžek, Michel Isabellon, Michele Di Musciano, Michele Carbognani, Miglena Zhiyanski, Mihai Puşcaş, Milan Barna, Mioko Ataka, Miska Luoto, Mohammed H. Alsafaran, Nadia Barsoum, Naoko Tokuchi, Nathalie Korboulewsky, Nicolas Lecomte, Nina Filippova, Norbert Hölzel, Olga Ferlian, Oscar Romero, Osvaldo Pinto-Jr, Pablo Peri, Pavel Dan Turtureanu, Peter Haase, Peter Macreadie, Peter B. Reich, Petr Petřík, Philippe Choler, Pierre Marmonier, Quentin Ponette, Rafael Dettogni Guariento, Rafaella Canessa, Ralf Kiese, Rebecca Hewitt, Robert Weigel, Róbert Kanka, Roberto Cazzolla Gatti, Rodrigo Lemes Martins, Romà Ogaya, Romain Georges, Rosario G. Gavilán, Sally Wittlinger, Sara Puijalon, Satoshi Suzuki, Schädler Martin, Schmidt Anja, Sébastien Gogo, Silvio Schueler, Simon Drollinger, Simone Mereu, Sonja Wipf, Stacey Trevathan-Tackett, Stefan Stoll, Stefan Löfgren, Stefan Trogisch, Steffen Seitz, Stephan Glatzel, Susanna Venn, Sylvie Dousset, Taiki Mori, Takanori Sato, Takuo Hishi, Tatsuro Nakaji, Theurillat Jean-Paul, Thierry Camboulive, Thomas Spiegelberger, Thomas Scholten, Thomas J. Mozdzer, Till Kleinebecker, Tomáš Rusňák, Tshililo Ramaswiela, Tsutom Hiura, Tsutomu Enoki, Tudor-Mihai Ursu, Umberto Morra di Cella, Ute Hamer, Valentin Klaus, Valter Di Cecco, Vanessa Rego, Veronika Fontana, Veronika Piscová, Vincent Bretagnolle, Vincent Maire, Vinicius Farjalla, Vittoz Pascal, Wenjun Zhou, Wentao Luo, William Parker, Yasuhiro Utsumi, Yuji Kominami, Zsolt Kotroczó, Zsolt Tóth, Field Science Center for Northern Biosphere, Hokkaido University [Sapporo, Japan], Department of Geosciences and Natural Resource Management [Copenhagen] (IGN), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Department of Forest Sciences [Helsinki], Faculty of Agriculture and Forestry [Helsinki], University of Helsinki-University of Helsinki, Department of Forest and Water Management, Forest & Nature Lab, Universiteit Gent = Ghent University [Belgium] (UGENT), National Center for Atmospheric Research [Boulder] (NCAR), Swiss Federal Institute for Forest, Snow and Landscape Research WSL, German Centre for Integrative Biodiversity Research (iDiv), Institute of Biology, Leipzig University, Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Zone Atelier du Bassin de la Moselle [LTSER France] (ZAM), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Ecosystèmes forestiers (UR EFNO), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Équipe 3 - Écologie, Évolution, Écosystemes Souterrains (E3S), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)-Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)-Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), ZABR UMR 5023 VILLEURBANNE CEDEX, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Équipe 2 - Écologie Végétale et Zones Humides (EVZH), Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Repositório da Universidade de Lisboa, Centre National de la Recherche Scientifique - CNRS (FRANCE), University of Helsinki (FINLAND), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Hokkaido University (JAPAN), German Centre for Integrative Biodiversity Research - iDiv (GERMANY), Universität Leipzig (GERMANY), National Center for Atmospheric Research - NCAR (UNITED STATES), Forschungsanstalt für Wald, Schnee und Landschaft - WSL (SWITZERLAND), Tea composition (SWITZERLAND), Universiteit Gent - UGENT (BELGIUM), University of Copenhagen - UCPH (DENMARK), Laboratoire Ecologie fonctionnelle et Environnement - EcoLab (Toulouse, France), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Universiteit Gent = Ghent University (UGENT), Leipzig University, Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Unité de recherche Comportement et Ecologie de la Faune Sauvage (CEFS), Muys, Bart, Department of Forest Sciences, Lammi Biological Station, Biological stations, Department of Geosciences and Geography, Helsinki Institute of Sustainability Science (HELSUS), BioGeoClimate Modelling Lab, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Kwon T., Shibata H., Kepfer-Rojas S., Schmidt I.K., Larsen K.S., Beier C., Berg B., Verheyen K., Lamarque J.-F., Hagedorn F., Eisenhauer N., Djukic I., Caliman A., Paquette A., Gutierrez-Giron A., Petraglia A., Augustaitis A., Saillard A., Ruiz-Fernandez A.C., Sousa A.I., Lillebo A.I., Da Rocha Gripp A., Lamprecht A., Bohner A., Francez A.-J., Malyshev A., Andric A., Stanisci A., Zolles A., Avila A., Virkkala A.-M., Probst A., Ouin A., Khuroo A.A., Verstraeten A., Stefanski A., Gaxiola A., Muys B., Gozalo B., Ahrends B., Yang B., Erschbamer B., Rodriguez Ortiz C.E., Christiansen C.T., Meredieu C., Mony C., Nock C., Wang C.-P., Baum C., Rixen C., Delire C., Piscart C., Andrews C., Rebmann C., Branquinho C., Jan D., Wundram D., Vujanovic D., Adair E.C., Ordonez-Regil E., Crawford E.R., Tropina E.F., Hornung E., Groner E., Lucot E., Gacia E., Levesque E., Benedito E., Davydov E.A., Bolzan F.P., Maestre F.T., Maunoury-Danger F., Kitz F., Hofhansl F., Hofhansl G., De Almeida Lobo F., Souza F.L., Zehetner F., Koffi F.K., Wohlfahrt G., Certini G., Pinha G.D., Gonzlez G., Canut G., Pauli H., Bahamonde H.A., Feldhaar H., Jger H., Serrano H.C., Verheyden H., Bruelheide H., Meesenburg H., Jungkunst H., Jactel H., Kurokawa H., Yesilonis I., Melece I., Van Halder I., Quiros I.G., Fekete I., Ostonen I., Borovsk J., Roales J., Shoqeir J.H., Jean-Christophe Lata J., Probst J.-L., Vijayanathan J., Dolezal J., Sanchez-Cabeza J.-A., Merlet J., Loehr J., Von Oppen J., Loffler J., Benito Alonso J.L., Cardoso-Mohedano J.-G., Penuelas J., Morina J.C., Quinde J.D., Jimnez J.J., Alatalo J.M., Seeber J., Kemppinen J., Stadler J., Kriiska K., Van Den Meersche K., Fukuzawa K., Szlavecz K., Juhos K., Gerhtov K., Lajtha K., Jennings K., Jennings J., Ecology P., Hoshizaki K., Green K., Steinbauer K., Pazianoto L., Dienstbach L., Yahdjian L., Williams L.J., Brigham L., Hanna L., Hanna H., Rustad L., Morillas L., Silva Carneiro L., Di Martino L., Villar L., Fernandes Tavares L.A., Morley M., Winkler M., Lebouvier M., Tomaselli M., Schaub M., Glushkova M., Torres M.G.A., De Graaff M.-A., Pons M.-N., Bauters M., Mazn M., Frenzel M., Wagner M., Didion M., Hamid M., Lopes M., Apple M., Weih M., Mojses M., Gualmini M., Vadeboncoeur M., Bierbaumer M., Danger M., Scherer-Lorenzen M., Ruek M., Isabellon M., Di Musciano M., Carbognani M., Zhiyanski M., Puca M., Barna M., Ataka M., Luoto M., H. Alsafaran M., Barsoum N., Tokuchi N., Korboulewsky N., Lecomte N., Filippova N., Hlzel N., Ferlian O., Romero O., Pinto-Jr O., Peri P., Dan Turtureanu P., Haase P., Macreadie P., Reich P.B., Petk P., Choler P., Marmonier P., Ponette Q., Dettogni Guariento R., Canessa R., Kiese R., Hewitt R., Weigel R., Kanka R., Cazzolla Gatti R., Martins R.L., Ogaya R., Georges R., Gaviln R.G., Wittlinger S., Puijalon S., Suzuki S., Martin S., Anja S., Gogo S., Schueler S., Drollinger S., Mereu S., Wipf S., Trevathan-Tackett S., Stoll S., Lfgren S., Trogisch S., Seitz S., Glatzel S., Venn S., Dousset S., Mori T., Sato T., Hishi T., Nakaji T., Jean-Paul T., Camboulive T., Spiegelberger T., Scholten T., Mozdzer T.J., Kleinebecker T., Runk T., Ramaswiela T., Hiura T., Enoki T., Ursu T.-M., Di Cella U.M., Hamer U., Klaus V., Di Cecco V., Rego V., Fontana V., Piscov V., Bretagnolle V., Maire V., Farjalla V., Pascal V., Zhou W., Luo W., Parker W., Parker P., Kominam Y., Kotrocz Z., and Utsumi Y.
- Subjects
010504 meteorology & atmospheric sciences ,tea bag, Green tea, Rooibos tea, litter decomposition, carbon turnover, nitrogen deposition, TeaComposition initiative ,Biome ,SOIL MICROBIAL COMMUNITIES ,tea bag ,Green tea ,Rooibos tea ,litter decomposition ,carbon turnover ,nitrogen deposition ,TeaComposition initiative ,Carbon turnover ,Nitrogen deposition -TeaComposition initiative ,Suelo ,Flora Microbiana ,01 natural sciences ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,GE1-350 ,Ecosistemas Terrestres ,Global and Planetary Change ,Nutrient Cycling ,Té Verde ,Nitrogen deposition - TeaComposition initiative ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Forestry ,Biomas ,[SDE]Environmental Sciences ,Terrestrial ecosystem ,[SDV.TOX.ECO]Life Sciences [q-bio]/Toxicology/Ecotoxicology ,Biologie ,Nitrogen ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,Animal science ,LEAF ,ORGANIC-CARBON ,Carbono ,RATES ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,climate ,Escala Global ,Nature and Landscape Conservation ,Nutrientes ,forests ,Ecologie, Environnement ,Science & Technology ,15. Life on land ,worldwide experiment ,[SDE.ES]Environmental Sciences/Environmental and Society ,Carbon ,Biology and Microbiology ,Agriculture and Soil Science ,Precipitación Atmosférica ,Cambio Climático ,Litter ,0401 agriculture, forestry, and fisheries ,Tea Composition initiative ,N-deposition ,Deposition (chemistry) ,Global Scale ,RESPONSES ,Terrestrial Ecosystems ,[SDV]Life Sciences [q-bio] ,Precipitation ,Biomes ,Degradation ,Soil ,Té Rooibos ,FOLIAR LITTER ,TEMPERATURE ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Ecology ,Nitrógeno ,Temperature ,Litter decomposition ,04 agricultural and veterinary sciences ,Temperatura ,Ciclo de Nutrientes ,1181 Ecology, evolutionary biology ,Life Sciences & Biomedicine ,Nutrient cycle ,Climate Change ,Environmental Sciences & Ecology ,Environmental Science (miscellaneous) ,Degradación ,Liter Descomposition ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Temperate climate ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,0105 earth and related environmental sciences ,Microbial Flora ,AVAILABILITY ,Chemical process of decomposition ,Bolsa de Té ,Nutrients ,Descomposición de Hojas ,SD1-669.5 ,Decomposition ,N DEPOSITION ,Environmental sciences ,Tea bag ,13. Climate action ,Earth and Environmental Sciences ,040103 agronomy & agriculture ,PATTERNS ,Environmental science ,cavelab ,Nitrogen deposition ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
Este artículo contiene 18 páginas, 5 tablas, 4 figuras., Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12- month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1– 3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss.In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate., This work was performed within the TeaComposition initiative, carried out by 190 institutions worldwide. We thank for funding support for the workshop and data analysis from the ILTER. We acknowledge support by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118), Scientific Grant Agency VEGA (Grant No. 2/0101/18), as well as by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement No. 677232). Thanks are due to FCT/MCTES for the financial support to CESAM (UIDB/50017/2020 + UIDP/50017/2020) and to the project PORBIOTA (POCI-01-0145-FEDER-022127). AI Sousa was funded by national funds through the FCTFoundation for Science and Technology, I.P., under the project CEECIND/00962/2017. HS and CB acknowledge FCT support to cE3c through UID/BIA/00329/2013, UID/BIA/00329/2019, and UIDB/00329/2020, and the project PORBIOTA - POCI-01- 0145-FEDER-022127. We are also thankful to UNILEVER for sponsoring the Lipton tea.
- Published
- 2021
3. High frequency of discontinuous rings in evergreen and deciduous hardwood species in a temperate forest
- Author
-
Tsutomu Enoki, Shinya Koga, Yuko Yasuda, and Yasuhiro Utsumi
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,Ecology ,Temperate forest ,Forestry ,Interspecific competition ,Management, Monitoring, Policy and Law ,Evergreen ,Biology ,01 natural sciences ,Trunk ,Deciduous ,Hardwood ,Temperate climate ,Temperate rainforest ,010606 plant biology & botany ,0105 earth and related environmental sciences ,Nature and Landscape Conservation - Abstract
Tree age derived from annual-ring counts provides fundamental information on forest stands and individual trees in temperate forests. However, discontinuous growth in the trunk may cause inaccuracies in annual-ring counts, and the effect of radial growth rate and interspecific differences on discontinuous ring formation have not been evaluated in the same forest stand. We investigated the occurrence of discontinuous rings at the base of 435 tree trunk disks of 16 evergreen and 15 deciduous hardwood tree species growing in a temperate forest of Japan. The effects of tree age and radial growth rate on frequency of discontinuous rings and their interspecific differences were evaluated by a generalized linear mixed-effect model. Discontinuous rings were observed in 29 of the 31 species in 330 individuals, which is about 75% of the total number of individuals examined. The number of discontinuous rings proportionally decreased with the growth rate and increased with the tree age. On the other hand, the effects of the growth rate were different among species. The majority of species at the study site contained frequent discontinuous rings in the trunk base. Annual-ring counts from a single core would lead to underestimation of tree ages in this case. Stem disks or increment cores taken in multiple directions at ground level would be useful for accurate estimation of tree age in temperate hardwood forests.
- Published
- 2018
4. Effects of species replacement on the relationship between net primary production and soil nitrogen availability along a topographical gradient: Comparison of belowground allocation and nitrogen use efficiency between natural forests and plantations
- Author
-
Naoaki Tashiro, Yuka Maeda, Takuo Hishi, Rieko Urakawa, and Tsutomu Enoki
- Subjects
0106 biological sciences ,Root growth ,Soil nitrogen ,Natural forest ,chemistry.chemical_element ,Primary production ,Forestry ,Mineralization (soil science) ,Management, Monitoring, Policy and Law ,010603 evolutionary biology ,01 natural sciences ,Nitrogen ,chemistry ,Agronomy ,Plant species ,Environmental science ,sense organs ,skin and connective tissue diseases ,010606 plant biology & botany ,Nature and Landscape Conservation ,Environmental gradient - Abstract
Changes in dominant plant species can influence the net primary production (NPP) via changes in species traits, including nitrogen use efficiency (NUE) and belowground allocation enhancing N uptake, as well as soil N availability. We investigated changes in above- and belowground NPP, N uptake, and NUE in response to changes in soil N in natural forests and plantations, with and without changes in species compositions among the environmental gradient, respectively. In plantations, NPP increased with increasing availability of soil N in the presence of constant NUE and the proportion of belowground NPP to total NPP. However, in natural forests, aboveground, belowground, and total NPP were high for the available middle range soil N. Belowground NPP and the proportion of belowground NPP to total NPP in natural forests was positively related to aboveground NPP. Both belowground NPP and soil N mineralization rates explained stand N uptake rates. These results indicated that belowground allocation might facilitate aboveground NPP with enhancement of N uptake by root allocation. Stand NUE decreased with soil N availability in natural forests and was stable in plantations, and resulted in lower production in natural forests and higher production in plantations under high soil N availability. The community weighted mean (CWM) of N resorption efficiency was positively related to NUE. The CWM of juvenile root growth, as reported previously for planted juveniles, was positively related to belowground NPP allocation. In addition, the ranges of CWMs were broader in natural forests than in plantations. This suggested that the different changes in NPP in response to changes in soil N between natural forests and plantations was due to the changes in leaf and root species traits via changing in species composition among sites. In conclusion, the present study showed that the changes in species specific traits in root growth and leaf N strongly affected the relationship between soil N availability and stand carbon and N dynamics.
- Published
- 2018
5. Characteristics of soil respiration in upper and lower slope positions with different aboveground biomass: a case study in a Japanese cypress forest
- Author
-
Tsutomu Enoki, Kyoichi Otsuki, Ayumi Katayama, and Tomonori Kume
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Cypress forest ,04 agricultural and veterinary sciences ,01 natural sciences ,Soil respiration ,Agronomy ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Spatial variability ,Aboveground biomass ,Agronomy and Crop Science ,0105 earth and related environmental sciences - Published
- 2018
6. Phylogenetic classification of the world's tropical forests
- Author
-
Priya Davidar, Andreas Hemp, Francis Q. Brearley, Marcio Seiji Suganuma, Sandra Brown, Robin L. Chazdon, Rahmad Zakaria, Timothy J. S. Whitfeld, Robert M. Kooyman, Nina Farwig, H. S. Suresh, Márcio de Morisson Valeriano, Christine B. Schmitt, Gemma Rutten, Tereza C. Spósito, Ed V.J. Tanner, Shijo Joseph, Kipiro Damas, Janet Franklin, Samir Gonçalves Rolim, Orlando Rangel, H. S. Dattaraja, Francisco Mora, Narayanaswamy Parthasarathy, Richard Field, Khairil Mahmud, Patrick A. Jansen, Raman Sukumar, Nobuo Imai, Xinghui Lu, Susan G. Laurance, Guillermo Ibarra-Manríquez, Hoang Van Sam, Rahayu Sukmaria Sukri, Gerardo Aymard, Emanuel H. Martin, Daniel M. Griffith, Campbell O. Webb, Katrin Boehning-Gaese, William F. Laurance, Timothy J. Killeen, Marcelo Tabarelli, Jeremy A. Lindsell, Ulf Pommer, Queila Souza Garcia, Natalia Targhetta, Christelle Gonmadje, C. Yves Adou Yao, Fabian Brambach, Shengbin Chen, Saara J. DeWalt, Robert Steinmetz, Rama Chandra Prasad, Miguel A. Munguía-Rosas, Phourin Chhang, Donald R. Drake, Salomón Aguilar, Giselda Durigan, Jennifer S. Powers, Jon C. Lovett, Jean Philippe Puyravaud, Susan K. Wiser, Michael Kessler, Pia Parolin, Runguo Zang, Hazimah Din, DIogo S.B. Rocha, Carlos Alfredo Joly, Kalle Ruokolainen, Ole R. Vetaas, Zhofre Aguirre Mendoza, Jorge A. Ahumada, Jurgi Cristóbal-Azkarate, Jan Reitsma, Hans Verbeeck, Polyanna da Conceição Bispo, Eizi Suzuki, David Harris, Florian Wittmann, Shauna-Lee Chai, Supriyadi, Felipe P. L. Melo, Darley C.L. Matos, Victor A. J. Adekunle, Michael J. Lawes, Faizah Metali, Eddy Nurtjahya, Thiago Metzker, John N. Williams, Vincent P. Medjibe, Lan Qi, Rhett D. Harrison, Johan van Valkenburg, John Vandermeer, Susan G. Letcher, Sandra L. Yap, Andy Hector, Kenneth J. Feeley, Terry Sunderland, Lourens Poorter, Ni Putu Diana Mahayani, Francesco Rovero, Alexandre F. Souza, Markus Fischer, Tsutomu Enoki, Eduardo Schmidt Eler, Ekananda Paudel, Pascal Boeckx, Marc P. E. Parren, Patricia Balvanera, Tariq Stévart, M. Shah Hussain, José Roberto Rodrigues Pinto, Frans Bongers, Plinio Sist, George B. Chuyong, Mohd Nizam Mohd Said, Jonathan Timberlake, J. W. Ferry Slik, Adandé Belarmain Fandohan, Jean-François Bastin, Nikolay Aguirre, Asyraf Mansor, José Lozada, Yves Laumonier, Mark Schulze, Ida Theilade, D. Mohandass, John R. Poulsen, Peter J. Bellingham, Simone Aparecida Vieira, Onrizal, Rolando Perez, Andes Hamuraby Rozak, Thomas W. Gillespie, Olle Forshed, Duncan Thomas, Philippe Saner, Andreas Ensslin, Douglas Sheil, Edward L. Webb, Anne Mette Lykke, Kuswata Kartawinata, Ervan Rutishauser, Eddie Lenza De Oliveira, Swapan Kumar Sarker, Elizabeth Kearsley, Wilson Roberto Spironello, Íñigo Granzow-de la Cerda, Karl A. O. Eichhorn, Rodrigo Muñoz, Shin-ichiro Aiba, Xiaobo Yang, Andrew R. Marshall, I. Faridah Hanum, Jean François Gillet, Corneille E. N. Ewango, K. Anitha, Eduardo A. Pérez-García, Jürgen Homeier, Satish Chandra Garkoti, Khalid Rehman Hakeem, Tran Van Do, Axel Dalberg Poulsen, Aisha Sultana, Luciana F. Alves, Meredith L. Bastian, Eduardo van den Berg, João Roberto dos Santos, Rakan A. Zahawi, Selene Báez, Felipe Zamborlini Saiter, Daniel L. Kelly, Jochen Schoengart, Bráulio A. Santos, Serge A. Wich, Jean Paul Metzger, Alvaro Duque, Andres Avella, Heike Culmsee, Víctor Arroyo-Rodríguez, Maria Teresa Fernandez Piedade, Jorge A. Meave, Brad Boyle, James Grogan, Jianwei Tang, and Evolutionary and Population Biology (IBED, FNWI)
- Subjects
0106 biological sciences ,Environmental change ,Geography & travel ,Tropical forests ,580 Plants (Botany) ,Species Composition ,Forests ,01 natural sciences ,Corrections ,Floristics ,Tropic Climate ,biogeographic legacies ,Forest structure ,Tropical Rain Forest ,forest functional similarity ,Tropical and subtropical moist broadleaf forests ,Conservation Of Natural Resources ,Frest functional similarity ,Phylogeny ,media_common ,ddc:910 ,tropical forests ,Multidisciplinary ,GE ,Phylogenetic tree ,Ecology ,Biodiversity ,RAIN-FOREST ,Plants ,Biological Sciences ,Classification ,REGIONS ,PE&RC ,forest classification ,Geography ,Biogeography ,Phylogenetic community distance ,Priority Journal ,Environmental Monitoring ,Conservation of Natural Resources ,Asia ,media_common.quotation_subject ,Climate Change ,Forest Structure ,ta1171 ,India ,Subtropics ,010603 evolutionary biology ,Cladistics ,ddc:570 ,Biogeographic legacies ,Madagascar ,Genetics ,Forest functional similarity ,Bosecologie en Bosbeheer ,Forest ,PLANT DIVERSITY ,Tropical Climate ,Western Hemisphere ,QH ,QK ,Information Processing ,foreste, filogenesi, conservazione ,Biology and Life Sciences ,ANGIOSPERMS ,Plant ,15. Life on land ,Nonhuman ,Forest Ecology and Forest Management ,Forest classification ,Forest Dynamics ,Earth and Environmental Sciences ,Wildlife Ecology and Conservation ,PATTERNS ,UPDATE ,cavelab ,Environmental Protection ,010606 plant biology & botany ,Diversity (politics) ,Phylogenetic nomenclature ,phylogenetic community distance - Abstract
Significance Identifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. African and American forests are grouped, reflecting their former western Gondwanan connection, while Indo-Pacific forests range from eastern Africa and Madagascar to Australia and the Pacific. The connection between northern-hemisphere Asian and American forests is confirmed, while Dry forests are identified as a single tropical biome., Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
- Published
- 2018
7. Alteration of soil properties by the invasive tree Psidium cattleianum along a precipitation gradient on O'ahu Island, Hawai'i
- Author
-
Tsutomu Enoki and Donald R. Drake
- Subjects
0106 biological sciences ,Psidium ,Ecology ,04 agricultural and veterinary sciences ,Plant Science ,010603 evolutionary biology ,01 natural sciences ,Decomposer ,Horticulture ,Dry weight ,Soil pH ,Soil water ,Botany ,040103 agronomy & agriculture ,Litter ,0401 agriculture, forestry, and fisheries ,Environmental science ,Ecosystem ,Water content - Abstract
To test the effects of invasion by strawberry guava trees (Psidium cattleianum) on the forest soil ecosystem, we compared soil properties between pairs of adjacent native and P. cattleianum stands. We set up six study sites that had developed under different mean annual precipitation levels in the Ko'olau Mountains on the island of O'ahu, Hawai'i. Accumulated litter mass and soil pH decreased with precipitation in the native stands. Invasion by P. cattleianum increased the amount of litter and reduced the differences in soil water content and pH among the sites. We compared the decomposition process using the Tea Bag Index, which is determined by the difference in dry mass of commercially available green and rooibos teas in nylon mesh bags before and after 90 days of burial. Psidium cattleianum increased the initial litter decomposition rate irrespective of precipitation and other soil properties. On the other hand, P. cattleianum increased the long-term litter stabilization factor of the Tea Bag Index in wetter sites. The accumulation of litter was likely caused by indirect effects of P. cattleianum through the alteration of soil moisture properties. In summary, this study shows that invasion by P. cattleianum could alter the soil properties in both wet and mesic sites, suggesting the possibility of change in composition and/or function of decomposers.
- Published
- 2017
8. Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago
- Author
-
Takuo Hishi, Keitaro Fukushima, Rieko Urakawa, Nobuhiro Oyanagi, Tomoki Oda, Hiroto Toda, Naoko Tokuchi, Megumi Kuroiwa, Hideaki Shibata, Ayumi Kotani, Yukio Yamao, Tsutomu Enoki, Asami Nakanishi, Keizo Hirai, Nobuhito Ohte, Tanaka Kenta, Makoto Nakata, Tsunehiro Watanabe, Kazuo Isobe, Ryunosuke Tateno, Yoshiyuki Inagaki, Karibu Fukuzawa, Nobuko Saigusa, and Shin Ugawa
- Subjects
0106 biological sciences ,Soil organic matter ,Forestry ,Soil science ,04 agricultural and veterinary sciences ,Soil carbon ,Mineralization (soil science) ,Management, Monitoring, Policy and Law ,010603 evolutionary biology ,01 natural sciences ,Agronomy ,Forest ecology ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Soil horizon ,Nitrification ,Ecosystem ,Nature and Landscape Conservation - Abstract
Nitrogen (N) is the primary limiting nutrient for forest production. Therefore, understanding how environmental factors affect N transformation rates is essential for the provision of sustainable ecosystem services. Because these factors are interlinked, it is important to consider direct and indirect structural relationships to better understand the factors contributing to N transformations. In this study, we analyzed the structural cause–effect relationships surrounding N transformations by structural equation modeling using a database containing net and gross N transformation rates and related soil chemical properties from 38 sites across the Japanese archipelago. The average net N mineralization and nitrification rates in the Japanese forest soils were 0.62 ± 0.68 and 0.59 ± 0.65 mg N kg−1 d−1, respectively, and gross N mineralization and nitrification rates were 4.22 ± 3.59 and 0.98 ± 0.68 mg N kg−1 d−1, respectively. Compared with previous large scale studies, net and gross N transformation rates in Japanese forest soils were considerably diverse despite their relatively small land area and were representative of temperate forest ecosystems. Structural equation modeling analysis showed that net N transformations were directly affected by gross N transformations, which in turn were significantly and directly affected by soil organic matter contents. Soil organic matter was significantly affected by organic layer amount, tree species and soil group. The effect of soil group was the greatest among these factors, suggesting that soil organic matter contents in Japanese forest soils were mainly influenced by soil parent materials. This was especially evident for Andosols, which are derived from volcanic sediments and contain large amounts of soil organic matter leading to high N transformation rates in the Japanese forest soils. Among the factors related to organic layers and mineral soil layers, soil organic matter content and organic layer amount, which represent substrate availability, had significant effects on gross and net N transformation rates. However, by refining the scale of the dataset using soil groups/soil parent materials, the influence of substrate quality and soil chemical properties on N transformations was suggested. From the current dataset, it was indicated that soil parent materials were the most important factor controlling the pattern of N transformations in the soil of Japanese forest ecosystems. This conclusion should be repeatedly refined considering the spatial distribution of factors such as climatic conditions and forest types with additional site datasets obtained from future surveys.
- Published
- 2016
9. Changes in spatial patterns of sika deer distribution and herbivory of planted seedlings: a comparison before and after deer population control by culling
- Author
-
Tsuneaki Yabe, Tsutomu Enoki, and Toru Koizumi
- Subjects
0106 biological sciences ,Herbivore ,Cervus ,Forest management ,Sowing ,Forestry ,Culling ,Biology ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,010601 ecology ,Plant ecology ,Animal science ,Temperate climate ,Camera trap - Abstract
Sika deer (Cervus nippon) sometimes cause extensive damage to planted tree seedlings. To evaluate the effects of culling on the spatial distribution patterns of sika deer and browse damage to planted seedlings, we compared the data collected before and after experimental culling in a cool, temperate, mixed forest on Kyushu Island, Japan. Experimental culling, conducted in an area of 1 km2, removed five, four and two sika deer in April, June and October 2011, respectively. During the year before culling, the spatial pattern of the number of sika deer caught on camera corresponded to the predicted sika deer density. Sika deer immediately browsed planted seedlings after the initial planting. The cumulative number of browsed seedlings increased over time, especially in winter. The spatial pattern of the cumulative number of sika deer caught on camera corresponded to that of browsed seedlings at the year’s end. During the year when culling was conducted, the number of sika deer caught on camera decreased around the center of the study site where the culling was conducted and the number of browsed seedlings decreased. During the year following culling, the cumulative number of browsed seedlings was very similar to that in the year before the culling, while the same low number of sika deer was caught on camera. These results indicate that the effects of deer culling resulted in decreased levels of sika deer appearance and browse damage for more than 1 year and for several months, respectively.
- Published
- 2015
10. Early stage litter decomposition across biomes
- Author
-
Umberto Morra di Cella, Sean P. Charles, Matteo Gualmini, Naoko Tokuchi, Michael Mirtl, Marta Lobão Lopes, Takeshi Ise, Inmaculada García Quirós, Geovana Carreño-Rocabado, Arne Verstraeten, Joan-Albert Sanchez-Cabeza, Thomas Zechmeister, Jill Thompson, Norbert Hölzel, Maroof Hamid, Rodrigo Lemes Martins, Taiki Mori, José Marcelo Domingues Torezan, Dana Polyanskaya, Peter Haase, Björn Berg, Angela Stanisci, Issaka Senou, Inger Kappel Schmidt, Markus Wagner, Adriano Caliman, Laurel M. Brigham, Alejandro Valdecantos, Céline Meredieu, Kalifa Coulibaly, Margarida Santos-Reis, Georg Wohlfahrt, Regin Rønn, Marcello Tomaselli, Martin Weih, Bernd Ahrends, Kaie Kriiska, Anja Schmidt, Luciana S. Carneiro, Ana I. Lillebø, Alessandro Petraglia, Algirdas Augustaitis, Ana I. Sousa, Sonja Wipf, Chi-Ling Chen, Hassan Bismarck Nacro, Sue J. Milton, Ivan Mihal, Ika Djukic, Florence Maunoury-Danger, Peter Fleischer, Tatsuro Nakaji, Cendrine Mony, Sara Puijalon, Rafael D. Guariento, Rosa Isela Meneses, Mihai Pușcaș, Pablo Luis Peri, Flurin Sutter, Kate Lajtha, Peter B. Reich, Lindsey E. Rustad, María Guadalupe Almazán Torres, Laura Williams, George L. Vourlitis, Evanilde Benedito, Arely N. Palabral-Aguilera, Luis Villar, Stefanie Hoeber, Juan J. Jiménez, Esperança Gacia, Alba Gutiérrez-Girón, Kazuhiko Hoshizaki, Takanori Sato, Eric Lucot, Osvaldo Borges Pinto, Artur Stefanski, Andrew R. Smith, Takuo Hishi, Rosario G. Gavilán, Till Kleinebecker, Julia Seeber, Gina Arena, Marcelo Sternberg, Mo Jiangming, Tsutom Hiura, Satoshi N. Suzuki, Jeyanny Vijayanathan, Christine Delire, Francisco Cuesta, Bill Parker, Mark Frenzel, Franz Zehetner, Vincent Maire, Edward Crawford, Heinke Jäger, Nicolas Lecomte, Tanaka Kenta, Yuji Kominami, Joseph C. Morina, Paige E. Weber, Pavel Dan Turtureanu, Marc Lebouvier, Pascal Vittoz, Jónína Sigríður Þorláksdóttir, Anne Probst, David Fuentes Delgado, Laura Yahdjian, Johan Neirynck, Isaac Ahanamungu Makelele, Bernard Bosman, Fábio Padilha Bolzan, Yury Rozhkov, Ute Hamer, Henning Meesenburg, Vinicius F. Farjalla, Steffen Seitz, Marie-Noëlle Pons, Jess K. Zimmerman, Hans Verbeeck, Thomas Scholten, Elena Preda, Thomas Spiegelberger, Romain Georges, Stefan Löfgren, Ferdinand Kristöfel, Pierre Marmonier, Juha M. Alatalo, Katalin Szlavecz, Ana Carolina Ruiz Fernández, Johannes M. H. Knops, Rita Adrian, Vanessa Mendes Rêgo, Jean-Christophe Lata, Rafaella Canessa, Kathrin Käppeler, Andrea Fischer, Michael Bierbaumer, Jiří Doležal, Hideaki Shibata, Marcus Schaub, Zsolt Toth, Diyaa Radeideh, Matthew A. Vadeboncoeur, Robert Kanka, William H. McDowell, Birgit Sattler, Jean-Luc Probst, Mioko Ataka, Katarína Gerhátová, Jawad Shoqeir, Stefan Stoll, Michael Danger, Sébastien Gogo, Katja Tielbörger, Laryssa Helena Ribeiro Pazianoto, Bo Yang, Franco L. Souza, John Loehr, Francisco de Almeida Lobo, Michael J. Liddell, Sylvie Dousset, Dirk Wundram, Ralf Kiese, Yalin Hu, Miglena Zhiyanski, José-Luis Benito-Alonso, Katie A. Jennings, Tsutomu Enoki, Helena Cristina Serrano, Quentin Ponette, Helge Bruelheide, Simon Drollinger, Vincent Bretagnolle, Ivika Ostonen, Lambiénou Yé, Javier Roales, Philippe Choler, Madison Morley, Charles A. Nock, Grizelle González, Tudor-Mihai Ursu, Maaike Y. Bader, Cristina Branquinho, Hugo López Rosas, Nina V. Filippova, Erzsébet Hornung, Anzar A. Khuroo, Lourdes Morillas, Harald Auge, Andreas Bohner, Florian Kitz, Stephan Glatzel, Aurora Gaxiola, Marijn Bauters, Stefan Trogisch, Guylaine Canut, Oscar Romero, Hélène Verheyden, Yulia Zaika, Veronika Piscová, Michael Scherer-Lorenzen, Valentin H. Klaus, Elena Tropina, Michele Di Musciano, Marie-Andrée Giroux, Florian Hofhansl, Wenjun Zhou, Corinna Rebmann, Thomas J. Mozdzer, Zsolt Kotroczó, Evy Ampoorter, Michal Růžek, Jana Borovská, Jianwu Tang, Petr Petřík, Juan Dario Quinde, Simone Mereu, Esther Lévesque, Olga Ferlian, Veronika Fontana, Joël Merlet, Stacey M. Trevathan-Tackett, André-Jean Francez, Wentao Luo, Héctor Alejandro Bahamonde, Roberto Cazzolla Gatti, Brigitta Erschbamer, Christopher Andrews, Marie-Anne de Graaff, Martin Schädler, Luciano Di Martino, Verena Busch, Elli Groner, Victoria Carbonell, Michinari Matsushita, Maria Glushkova, Sarah Freda, Alain Paquette, Annie Ouin, Robert Weigel, Monique Carnol, Bohdan Juráni, Ian D. Yesilonis, Jean-Paul Theurillat, Hugo L. Rojas Villalobos, Alberto Humber, Martha Apple, Nico Eisenhauer, Claus Beier, Hermann F. Jungkunst, Hiroko Kurokawa, Nadia Barsoum, Thierry Camboulive, Klaus Steenberg Larsen, Frank Berninger, Laura Dienstbach, Yasuhiro Utsumi, Inara Melece, Felipe Varela, Sally Wittlinger, Christian Rixen, Valter Di Cecco, Anderson da Rocha Gripp, Marina Mazón, E. Carol Adair, Hanna Lee, István Fekete, Liesbeth van den Brink, José-Gilberto Cardoso-Mohedano, Ken Green, Heike Feldhaar, Jonathan von Oppen, Michele Carbognani, Lu Xiankai, Christophe Piscart, Fernando T. Maestre, Karibu Fukuzawa, Chiao-Ping Wang, Bart Muys, Lipeng Zhang, Harald Pauli, Inge van Halder, Carmen Eugenia Rodríguez Ortíz, Eduardo Ordóñez-Regil, Priscilla Muriel, Heather D. Alexander, Sebastian Kepfer-Rojas, Victoria Ochoa, Casper T. Christiansen, Mohammed Alsafran, Thaisa Sala Michelan, Christel Baum, Amélie Saillard, Hervé Jactel, Markus Didion, Evgeny A. Davydov, Sabyasachi Dasgupta, Anna Avila, Andrijana Andrić, Kris Verheyen, Jörg Löffler, Gisele Daiane Pinha, Anikó Seres, Jutta Stadler, Milan Barna, Andrey V. Malyshev, Rebecca E. Hewitt, Joh R. Henschel, Peter I. Macreadie, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Norwegian Institute for Water Research (NIVA), Swedish University of Agricultural Sciences (SLU), Dept Forest & Water Management, Lab Forestry, Universiteit Gent = Ghent University [Belgium] (UGENT), Centre for Forest Research (CFR), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria = National Institute for Agricultural and Food Research and Technology (INIA), Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, European Forest Institute = Institut Européen de la Forêt = Euroopan metsäinstituutti (EFI), Institute of Information Engineering [Beijing] (IIE), Chinese Academy of Sciences [Beijing] (CAS), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), University of Rostock, WSL Institute for Snow and Avalanche Research SLF, Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Department Computational Hydrosystems [UFZ Leipzig], Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249) (LCE), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Département de chimie-biologie & Centre d’études nordiques [CANADA], Université du Québec à Trois-Rivières (UQTR), Area de Biodiversidad y Conservaciín, Universidad Rey Juan Carlos [Madrid] (URJC), Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Institute of Soil Research, Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Institute of Ecology, University of Innsbruck, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Computational & Applied Vegetation Ecology (CAVElab), Department Community Ecology [UFZ Leipzig], University of Vienna [Vienna], Institut du Développement rural (IDR), Université Polytechnique Nazi Boni Bobo-Dioulasso (UNB), Unité de recherche Comportement et Ecologie de la Faune Sauvage (CEFS), Institut National de la Recherche Agronomique (INRA), Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-Universität Halle Wittenberg (MLU), Tohoku University [Sendai], Institute of Ecology and Earth Sciences [Tartu], University of Tartu, Institut d'écologie et des sciences de l'environnement de Paris (iEES), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre alpien de Phytogéographie (CAP), Fondation Jean-Marcel Aubert, Inst Trop Ecosyst Studies, University of Puerto Rico (UPR), Universidad de Valladolid [Valladolid] (UVa), Mountain Agriculture Research Unit, Centre international de recherche-développement sur l'élevage en zone sub-humide (CIRDES), Centre Universitaire Polytechnique de Dédougou (CUP-D), Université Joseph Ki-Zerbo [Ouagadougou] (UJZK), USDA Forest Service, Instituto Pirenaico de Ecologia = Pyrenean Institute of Ecology (IPE), Station Biologique de Paimpont CNRS UMR 6653 (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Institute of Pharmacology and Toxicology [Zurich], Universität Zürich [Zürich] = University of Zurich (UZH), Centre for Ecology - Evolution and Environmental Changes (cE3c) - Faculdade de Ciências, Universidade de Lisboa = University of Lisbon (ULISBOA), Canada Research in Northern Biodiversity, Université du Québec à Rimouski (UQAR), Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Zone Atelier du Bassin de la Moselle [LTSER France] (ZAM), Department of Crop Production Ecology, University of Freiburg, Forest Research Institute- BAS, Bulgarian Academy of Sciences (BAS), Lab Plant & Microbial Ecol, Inst Bot B22, Université de Liège, Laboratoire Dynamique de la Biodiversité (LADYBIO), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Leipzig University, Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Universitat Politècnica de Catalunya [Barcelona] (UPC), Université de Lausanne = University of Lausanne (UNIL), Department of Limnology and Conservation, Senckenberg Research Institutes and Natural History Museums, Department of Forest Resources, University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Department of Science for Nature and Natural Resources, Università degli Studi di Sassari = University of Sassari [Sassari] (UNISS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido University [Sapporo, Japan], Bangor University, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), LTSER «Zone Atelier Plaine & Val de Sevre» [France], Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Condensed Matter Theory Laboratory RIKEN (RIKEN), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), 730938, Biological Interactions Doctoral Programme, Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, 2/0101/18, Scientific Grant Agency VEGA, 2190, Fundación Charles Darwin, UID/AMB/50017, Centro de Estudos Ambientais e Marinhos, Universidade de Aveiro, ILTER Initiative Grant, ClimMani Short-Term Scientific Missions Grant, ES1308-231015-068365, Austrian Environment Agency, SFRH/BPD/107823/2015, Portuguese Foundation, DEB-1557009, NSF, UID/BIA/00329/2013, Fundação para a Ciência e Tecnologia, Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), University of Helsinki, Universität für Bodenkultur Wien [Vienne, Autriche] (BOKU), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), Centre alpien de Phytogéographie, Fondation J.-M. Aubert, Centre international de recherche-développement sur l'élevage en zone Subhumide (CIRDES), Centre international de recherche-développement sur l'élevage en zone Subhumide, Instituto Pirenaico de Ecologia (IPE), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Lisbon, Université de Leipzig, Westfälische Wilhelms-Universität Münster (WWU), Université de Lausanne (UNIL), University of Sassari, Biogéosciences [UMR 6282] [Dijon] (BGS), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University (UGENT), Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Laboratoire Chrono-environnement (UMR 6249) (LCE), Leopold Franzens Universität Innsbruck - University of Innsbruck, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Instituto Pirenaico de Ecologìa = Pyrenean Institute of Ecology [Zaragoza] (IPE - CSIC), Université de Rennes (UR), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Météo France (FRANCE), UCL - SST/ELI/ELIE - Environmental Sciences, Swiss Federal Institute for Forest, Snow and Avalanche Research WSL, Swedish University of Agricultural Sciences - Department of Forest Soils, Ghent University [Belgium] (UGENT), Université du Québec à Montréal (UQAM), Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA), Spanish National Institute for Agriculture and Food Research and Technology (INIA), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS), Science Politique Relations Internationales Territoire (SPIRIT), Université Montesquieu - Bordeaux 4-Institut d'Études Politiques [IEP] - Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), University of Rostock [Germany], Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Helmholtz Centre for Environmental Research (UFZ), Universiteit Gent [Ghent], Laboratoire de Comportement et d'Ecologie de la Faune Sauvage, INRA, 31326 Castanet-Tolosan cedex, France, Institut d'écologie et des sciences de l'environnement de Paris (IEES), Universidad de Puerto Rico, Centre Universitaire Polytechnique de Dédougou, Université de Ouagadougou, Instituto Pirenaico de Ecología, IPE-CSIC, University of Zürich [Zürich] (UZH), LTSER Zone Atelier du Bassin de la Moselle, Helmholtz Zentrum für Umweltforschung (UFZ), Institute of Terrestrial Ecosystems, University of Minnesota [Twin Cities], Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE), Université Catholique de Louvain (UCL), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Hokkaido University, Technische Universität Dresden (TUD), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR), LTSER Zone Atelier Plaine & Val de Sèvre, Djukic I., Kepfer-Rojas S., Schmidt I.K., Larsen K.S., Beier C., Berg B., Verheyen K., Caliman A., Paquette A., Gutierrez-Giron A., Humber A., Valdecantos A., Petraglia A., Alexander H., Augustaitis A., Saillard A., Fernandez A.C.R., Sousa A.I., Lillebo A.I., da Rocha Gripp A., Francez A.-J., Fischer A., Bohner A., Malyshev A., Andric A., Smith A., Stanisci A., Seres A., Schmidt A., Avila A., Probst A., Ouin A., Khuroo A.A., Verstraeten A., Palabral-Aguilera A.N., Stefanski A., Gaxiola A., Muys B., Bosman B., Ahrends B., Parker B., Sattler B., Yang B., Jurani B., Erschbamer B., Ortiz C.E.R., Christiansen C.T., Carol Adair E., Meredieu C., Mony C., Nock C.A., Chen C.-L., Wang C.-P., Baum C., Rixen C., Delire C., Piscart C., Andrews C., Rebmann C., Branquinho C., Polyanskaya D., Delgado D.F., Wundram D., Radeideh D., Ordonez-Regil E., Crawford E., Preda E., Tropina E., Groner E., Lucot E., Hornung E., Gacia E., Levesque E., Benedito E., Davydov E.A., Ampoorter E., Bolzan F.P., Varela F., Kristofel F., Maestre F.T., Maunoury-Danger F., Hofhansl F., Kitz F., Sutter F., Cuesta F., de Almeida Lobo F., de Souza F.L., Berninger F., Zehetner F., Wohlfahrt G., Vourlitis G., Carreno-Rocabado G., Arena G., Pinha G.D., Gonzalez G., Canut G., Lee H., Verbeeck H., Auge H., Pauli H., Nacro H.B., Bahamonde H.A., Feldhaar H., Jager H., Serrano H.C., Verheyden H., Bruelheide H., Meesenburg H., Jungkunst H., Jactel H., Shibata H., Kurokawa H., Rosas H.L., Rojas Villalobos H.L., Yesilonis I., Melece I., Van Halder I., Quiros I.G., Makelele I., Senou I., Fekete I., Mihal I., Ostonen I., Borovska J., Roales J., Shoqeir J., Lata J.-C., Theurillat J.-P., Probst J.-L., Zimmerman J., Vijayanathan J., Tang J., Thompson J., Dolezal J., Sanchez-Cabeza J.-A., Merlet J., Henschel J., Neirynck J., Knops J., Loehr J., von Oppen J., Thorlaksdottir J.S., Loffler J., Cardoso-Mohedano J.-G., Benito-Alonso J.-L., Torezan J.M., Morina J.C., Jimenez J.J., Quinde J.D., Alatalo J., Seeber J., Stadler J., Kriiska K., Coulibaly K., Fukuzawa K., Szlavecz K., Gerhatova K., Lajtha K., Kappeler K., Jennings K.A., Tielborger K., Hoshizaki K., Green K., Ye L., Pazianoto L.H.R., Dienstbach L., Williams L., Yahdjian L., Brigham L.M., van den Brink L., Rustad L., Zhang L., Morillas L., Xiankai L., Carneiro L.S., Di Martino L., Villar L., Bader M.Y., Morley M., Lebouvier M., Tomaselli M., Sternberg M., Schaub M., Santos-Reis M., Glushkova M., Torres M.G.A., Giroux M.-A., de Graaff M.-A., Pons M.-N., Bauters M., Mazon M., Frenzel M., Didion M., Wagner M., Hamid M., Lopes M.L., Apple M., Schadler M., Weih M., Gualmini M., Vadeboncoeur M.A., Bierbaumer M., Danger M., Liddell M., Mirtl M., Scherer-Lorenzen M., Ruzek M., Carbognani M., Di Musciano M., Matsushita M., Zhiyanski M., Puscas M., Barna M., Ataka M., Jiangming M., Alsafran M., Carnol M., Barsoum N., Tokuchi N., Eisenhauer N., Lecomte N., Filippova N., Holzel N., Ferlian O., Romero O., Pinto O.B., Peri P., Weber P., Vittoz P., Turtureanu P.D., Fleischer P., Macreadie P., Haase P., Reich P., Petrik P., Choler P., Marmonier P., Muriel P., Ponette Q., Guariento R.D., Canessa R., Kiese R., Hewitt R., Ronn R., Adrian R., Kanka R., Weigel R., Gatti R.C., Martins R.L., Georges R., Meneses R.I., Gavilan R.G., Dasgupta S., Wittlinger S., Puijalon S., Freda S., Suzuki S., Charles S., Gogo S., Drollinger S., Mereu S., Wipf S., Trevathan-Tackett S., Lofgren S., Stoll S., Trogisch S., Hoeber S., Seitz S., Glatzel S., Milton S.J., Dousset S., Mori T., Sato T., Ise T., Hishi T., Kenta T., Nakaji T., Michelan T.S., Camboulive T., Mozdzer T.J., Scholten T., Spiegelberger T., Zechmeister T., Kleinebecker T., Hiura T., Enoki T., Ursu T.-M., di Cella U.M., Hamer U., Klaus V.H., Rego V.M., Di Cecco V., Busch V., Fontana V., Piscova V., Carbonell V., Ochoa V., Bretagnolle V., Maire V., Farjalla V., Zhou W., Luo W., McDowell W.H., Hu Y., Utsumi Y., Kominami Y., Zaika Y., Rozhkov Y., Kotroczo Z., Toth Z., and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
DYNAMICS ,010504 meteorology & atmospheric sciences ,Biome ,Biochimie, Biologie Moléculaire ,Carbon turnover ,01 natural sciences ,CARBON ,Waste Management and Disposal ,ComputingMilieux_MISCELLANEOUS ,CLIMATE-CHANGE ,биомы ,Tea bag, Green tea, Rooibos tea, Carbon turnover, TeaComposition initiative ,04 agricultural and veterinary sciences ,Pollution ,Environmental chemistry ,[SDE]Environmental Sciences ,Terrestrial ecosystem ,Life Sciences & Biomedicine ,Biologie ,TRAITS ,Rooibos tea ,IMPACTS ,Environmental Engineering ,почвенные процессы ,chemistry.chemical_element ,Climate change ,Environmental Sciences & Ecology ,Ingénierie de l'environnement ,Green tea ,Tea bag ,TeaComposition initiative ,Ecology and Environment ,Atmosphere ,подстилки ,Environmental Chemistry ,Ecosystem ,RATES ,0105 earth and related environmental sciences ,оборот углерода ,Science & Technology ,Tea composition initiative ,FEEDBACK ,15. Life on land ,Decomposition ,влияние климата ,TERRESTRIAL ECOSYSTEMS ,MODEL ,экосистемы ,chemistry ,13. Climate action ,PATTERNS ,040103 agronomy & agriculture ,Litter ,0401 agriculture, forestry, and fisheries ,Environmental science ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,500 Naturwissenschaften und Mathematik::570 Biowissenschaften ,Biologie::577 Ökologie ,Carbon ,Environmental Sciences - Abstract
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained
- Published
- 2018
11. Stand structure and plant species occurrence in forest edge habitat along different aged roads on Okinawa Island, southwestern Japan
- Author
-
Tsutomu Enoki, Buntarou Kusumoto, Kazuki Tsuji, and Shuichi Igarashi
- Subjects
Pioneer species ,biology ,Ecology ,Forest management ,Forestry ,Introduced species ,Plant community ,04 agricultural and veterinary sciences ,Understory ,010501 environmental sciences ,biology.organism_classification ,01 natural sciences ,Edge effects ,Geography ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Schima wallichii ,Climax community ,0105 earth and related environmental sciences - Abstract
We compared stand structure and plant species occurrence on the shoulders of 3-, 10- and 20-year-old roads in a subtropical evergreen broad-leaved forest to document temporal changes in edge effects of forest roads. We recorded 154 vascular species in the study plots, including 3 non-native species. We used generalized linear mixed models to analyze changes in forest structure and plant species composition in relationship to the distance from forest roads. The spatial patterns in stand structure at different distances from roads differed with road age. The large canopy openness on the edge of 3-year-old roads decreased with time after the construction. A progressive decrease in tree height on roadsides was observed after the road construction, suggesting tall trees could not withstand the dry and windy roadside environment. The edge effect on the canopy tended to be larger at higher elevation sites. The spatio-temporal pattern of species occurrence based on distance from roads differed by species. Typical pioneer species such as Schima wallichii and Eurya japonica increased along the edge, while less aggressive pioneer species and understory species decreased. As time passed after the road construction, some climax and understory species decreased at the forest edge, while other climax and understory species increased. The modeling methods proposed in this study could be applied to different roadside and edge study sites.
- Published
- 2014
12. Topographic Influence on Plant Nitrogen and Phosphorus Stoichiometry in a Temperate Forested Watershed
- Author
-
Ayumi Katayama, Tsutomu Enoki, Shoko Ikezaki, and Masaaki Chiwa
- Subjects
Hydrology ,Environmental Engineering ,Watershed ,010504 meteorology & atmospheric sciences ,Ecological Modeling ,Phosphorus ,chemistry.chemical_element ,010501 environmental sciences ,01 natural sciences ,Pollution ,Nitrogen ,Animal science ,chemistry ,Litter ,Temperate climate ,Environmental Chemistry ,Spatial variability ,Cypress ,Deposition (chemistry) ,0105 earth and related environmental sciences ,Water Science and Technology - Abstract
Plant stoichiometry has been used to diagnose phosphorus (P) limitation caused by increased atmospheric nitrogen (N) deposition. Spatial variability of N/P stoichiometry within a forested watershed has not yet been evaluated. This study conducted synoptic sampling of leaf matter in 27 plots within a temperate forested watershed on low P availability rock (serpentine bedrock) with a moderately high atmospheric N deposition (16 kg N ha−1 year−1) to assess the effects of spatial topographic variation on N/P stoichiometry. Leaf N and P concentrations and N/P ratios of Japanese cypress were assessed, and their spatial variations were evaluated across a catchment. Average leaf P concentration was low (0.66 ± 0.16 mg g−1) across the sites, while leaf N concentration was high (13.0 ± 1.5 mg g−1); subsequently, N/P ratios were high (21 ± 5). In addition, the aboveground biomass growth of Japanese cypress positively correlated with litter P, implying the P limitation of Japanese cypress at the study site. Leaf P concentrations responded to the index of convexity (IC) values more than those of N. Subsequently, the N/P ratio correlated with IC, suggesting that N/P ratios are susceptible to topographic features. This could be partly caused by smaller spatial variability of N availability compared with P, owing to increased atmospheric N deposition. Thus, topography should be taken into consideration when diagnosing P limitation caused by N deposition.
- Published
- 2015
13. Aboveground productivity of an unsuccessful 140-year-old Cryptomeria japonica plantation in northern Kyushu, Japan
- Author
-
Inoue Takafumi, Hiroaki Ishii, Tsutomu Enoki, and Naoaki Tashiro
- Subjects
0106 biological sciences ,Topography ,biology ,Ecology ,Forest management ,Primary production ,Cryptomeria ,Slope position ,Forestry ,04 agricultural and veterinary sciences ,Litterfall ,Plant litter ,biology.organism_classification ,01 natural sciences ,Japonica ,Plant ecology ,Mixed forest ,Agronomy ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Biomass ,Unsuccessful plantation ,Aboveground biomass ,010606 plant biology & botany - Abstract
We measured the aboveground biomass, biomass increment and litterfall production of a 140-year-old, abandoned Cryptomeria japonica plantation in order to infer the effects of topography on biomass production. The plantation was unsuccessful and the naturally regenerated broad-leaved trees contributed 93.4% (374.2 Mg ha−1) of the total aboveground biomass (400.2 Mg ha−1). Comparing between different slope positions, aboveground biomass decreased downslope corresponding to the decrease in broad-leaved tree biomass. The biomass of C. japonica did not vary with slope position. Biomass increment and litterfall production of the broad-leaved trees also decreased downslope. However, litterfall production per unit biomass and aboveground net primary production per unit biomass increased downslope. Results of a path analysis showed that biomass increment of C. japonica decreased with increasing topographical convexity, whereas biomass and litterfall production of broad-leaved tree increased. Litterfall production of broad-leaved tree decreased with increasing biomass of C. japonica, suggesting that, despite their small biomass, the presence of residual C. japonica may have negative effects on the distribution and productivity of the broad-leaved trees. Our results indicated that total aboveground biomass of the study site was comparable to that of old-growth C. japonica plantations. We inferred that the variation in aboveground biomass of the broad-leaved trees was largely determined by the topography, while their productivity was affected by interactions with planted C. japonica.
- Published
- 2011
14. Long-term ecological impacts of clear-fell logging on tree species diversity in a subtropical forest, southern Japan
- Author
-
Tsutomu Enoki, Yasuhiro Kubota, and Shinjiro Fujii
- Subjects
geography ,geography.geographical_feature_category ,Agroforestry ,Ecology ,Forest management ,Logging ,Species diversity ,Forestry ,04 agricultural and veterinary sciences ,010501 environmental sciences ,Old-growth forest ,01 natural sciences ,Forest restoration ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Secondary forest ,Environmental science ,Dominance (ecology) ,Forest farming ,0105 earth and related environmental sciences - Abstract
Defining the spatial arrangement and length of the cutting cycle in a logged area is crucial for reconciling potential conflicts between timber yields and maintenance of ecosystem services in natural forests. In this study, we investigated long-term impacts of clear-fell logging on timber production and tree species diversity in a subtropical forest on the Ryukyu Islands, using an individual-based simulation model. We assumed six logging scenarios defined by combinations of forest type and regeneration processes, which acted as surrogates for spatial scales of clear-fell logging. These scenarios were simulated under cutting cycles ranging from 20 to 150 years. Short-cutting cycles resulted in dominance by the sprouting species Castanopsis sieboldii. The compositional shift was accelerated by the lack of seed dispersal from surrounding forest areas. The simulations demonstrated that a sustainable logging regime maintaining both yield and tree species diversity requires a cutting cycle longer than 50 years. The simulation results also suggest that the trade-off between the recovery of tree species diversity and timber production is favored more in stands surrounded by mature forest than in isolated stands or stands surrounded by immature forest. Ecological risk assessments based on model simulations provide an alternative to current forest management practices that rely on empirical knowledge.
- Published
- 2010
15. Resilience of stand structure and tree species diversity in subtropical forest degraded by clear logging
- Author
-
Yasuhiro Kubota, Shinjiro Fujii, and Tsutomu Enoki
- Subjects
0106 biological sciences ,Stand development ,Ecology ,Logging ,Castanopsis sieboldii ,Species diversity ,Forestry ,Ecological succession ,Understory ,Biology ,010603 evolutionary biology ,01 natural sciences ,Species richness ,Tropical and subtropical moist broadleaf forests ,010606 plant biology & botany - Abstract
Subtropical forests in the Ryukyu Islands have been degraded by silvicultural practices, and thus their structural attributes are being shifted to other states dominated by a few tree species. This study clarified the mechanisms of the change, and examined the effect of clear logging on the resilience of a subtropical forest. Sprouting regeneration and typhoon disturbance were introduced into an individual-based model, SEIB-DGVM, for describing stand development and succession. The regeneration dynamics from young secondary to old-growth stands were reproduced fairly well with the model. Sprouting recruitment produced high stem density at the beginning of stand development, which caused a self-thinning trajectory following the −3/2 power law. In the late development stage after 70 years, tree species diversity fluctuated because of the regenerative response of sprouting species and the facilitatory effect of typhoon disturbance on the coexistence of subordinate species. The death of canopy trees because of typhoon disturbances reduced the dominance of Castanopsis sieboldii, and depressed its dominance in the understory. Consequently, the understory species could establish by virtue of fallen canopy trees, and tree species diversity increased at the stand level. Clear logging experiments in the model revealed that species diversity deteriorated, especially in the stand dominated by sprouting species. Resilience of subtropical forests was determined by initial species composition before clear logging. Our simulation results suggest that repeated logging drives subtropical forests with high species diversity to a stand monopolized by C. sieboldii.
- Published
- 2009
16. Effects of sika deer (Cervus nippon) and dwarf bamboo (Sasamorpha borealis) on seedling emergence and survival in cool-temperate mixed forests in the Kyushu Mountains
- Author
-
Tsutomu Enoki, Sachiko Inoue, Naoaki Tashiro, Yasuhiro Utsumi, Sigefumi Saruki, Susumu Inoue, Katsuyoshi Kubota, and Ikue Murata
- Subjects
0106 biological sciences ,Canopy ,Bamboo ,Cervus ,biology ,Ecology ,Forest management ,Forestry ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Plant ecology ,Agronomy ,Seedling ,Sasa ,Temperate climate ,010606 plant biology & botany - Abstract
Effects of sika deer (Cervus nippon) and dwarf bamboo (“sasa;” Sasamorpha borealis) on seedling emergence and survival were investigated in cool-temperate mixed forests in the Kyushu mountain range, Japan. We compared the effects of sika deer between two sites with different sika deer densities. One site (no-sasa forest) has sparse cover of S. borealis and a high density of sika deer, and the other site (sasa forest) has dense cover of S. borealis with a low density of sika deer. In the no-sasa forest, more seedlings emerged and the survival rate of the seedlings was higher compared with the sasa forest. Compared with the sasa forest, the canopy in the no-sasa forest was more open, the organic layer was shallower and drier, the mean daily soil temperature was higher, and soil temperature fluctuated more widely. Those environmental parameters did not differ between unfenced and fenced plots. The comparison between the sasa and no-sasa forests suggested that removal of S. borealis by sika deer had an indirect positive effect on seedling emergence and survival. However, the fenced-plot experiments indicated that sika deer inhibited seedling emergence and survival. These contradictory conclusions could result from the much larger negative effects of S. borealis on seedling emergence and survival compared with the effects of sika deer browsing.
- Published
- 2009
17. Distribution and stem growth patterns of mangrove species along the Nakara River in Iriomote Island, Southwestern Japan
- Author
-
Tsutomu Enoki, Rempei Suwa, Daisuke Nanki, Akio Hagihara, and Moeko Ueda
- Subjects
geography ,geography.geographical_feature_category ,biology ,ved/biology ,Ecology ,ved/biology.organism_classification_rank.species ,Rhizophoraceae ,Kandelia candel ,Forestry ,04 agricultural and veterinary sciences ,Rhizophora stylosa ,010501 environmental sciences ,biology.organism_classification ,Bruguiera ,01 natural sciences ,Basal area ,Botany ,040103 agronomy & agriculture ,River mouth ,0401 agriculture, forestry, and fisheries ,Mangrove ,0105 earth and related environmental sciences ,Woody plant - Abstract
We examined variations in stand structure and tree growth of a mangrove forest along two gradients: from the river mouth to upper stream and from the riverside to inland, along the Nakara River, Iriomote Island, Japan. Bruguiera gymnorrhiza (L.) Lamk. occurred throughout the intertidal area, though Rhizophora stylosa Griff. and Kandelia candel (L) Druce did not occur upstream. Basal area and maximum tree height of B. gymnorrhiza decreased downstream. The growth rate in stem diameter of B. gymnorrhiza decreased downstream in relation with the soil salinity. The basal area and the maximum tree height of B. gymnorrhiza increased with the distance from the riverside. R. stylosa increased in stem diameter and growth rate toward the riverside.
- Published
- 2009
18. Effects of topography and planted trees on the distribution of naturally regenerated broad-leaved trees in a 140-year-oldCryptomeria japonicaplantation in northern Kyushu, Japan
- Author
-
Inoue Takafumi, Naoaki Tashiro, Tsutomu Enoki, Kotaro Sakuta, and Susumu Inoue
- Subjects
0106 biological sciences ,Canopy ,biology ,Agroforestry ,Forest management ,Cryptomeria ,Forestry ,04 agricultural and veterinary sciences ,biology.organism_classification ,01 natural sciences ,Japonica ,Plant ecology ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,010606 plant biology & botany - Abstract
We investigated factors affecting the distribution of naturally regenerated broad-leaved trees in a 140-year-old Cryptomeria japonica plantation. We used path analysis to examine the relationship among microtopography, the biomass of planted trees, and the biomasses of canopy and subcanopy trees of broad-leaved species. The study plot was divided into three topographic types (ridge, slope, and valley), and we discuss how the different topographic types are affected. For all topographic types, the biomass of canopy trees of broad-leaved species decreased with convexity. For slope and valley topographies, the biomass of subcanopy trees of broad-leaved species also decreased with convexity. For ridge topography, the biomass of subcanopy trees of broad-leaved species increased with the biomass of planted trees, and decreased with the biomass of canopy trees of broad-leaved species. These results suggest the effects of microtopography on the biomass of subcanopy trees were much larger than the effects of canopy trees for slope and valley topographies, while the effects of microtopography were smaller for ridge topography.
- Published
- 2008
19. Contribution of a liana species,Mucuna macrocarpaWall., to litterfall production and nitrogen input in a subtropical evergreen broad-leaved forest
- Author
-
Buntarou Kusumoto and Tsutomu Enoki
- Subjects
0106 biological sciences ,Nutrient cycle ,Ecology ,Forestry ,Subtropics ,Plant litter ,Evergreen ,010603 evolutionary biology ,01 natural sciences ,Spatial heterogeneity ,Plant ecology ,Liana ,Agronomy ,Abundance (ecology) ,Environmental science ,010606 plant biology & botany - Abstract
Annual amounts of litterfall and nitrogen input by litterfall were measured in a subtropical evergreen broad-leaved forest to examine the contribution of a liana species, Mucuna macrocarpa Wall., to the spatial heterogeneity of litterfall production and nitrogen input. The total litterfall in the study plot was 7.1 t ha−1 year−1. The amount of litterfall varied with topography and was greatest at the valley bottom and decreased toward the ridges. Macuna macrocarpa litterfall was absent on the ridges although it accounted for the largest percentage, 32%, of total leaf litter production in the valley. Nitrogen input by litterfall was 69 kg ha−1 year−1 in the plot. Nitrogen input by litterfall was also largest at the valley bottom and decreased toward the ridges. Leaf litter of M. macrocarpa had approximately twice the nitrogen concentration of litterfall of other species. Macuna macrocarpa accounted for 42% of nitrogen input by leaf litter in the valley. The abundance and the high nitrogen concentration of M. macrocarpa intensified differences in the amount of litterfall and nitrogen input by litterfall between valleys and ridges. It was concluded that a liana species, M. macrocarpa, can contribute to the spatial heterogeneity of litterfall and may subsequently affect nutrient cycling in a subtropical evergreen broad-leaved forest on Okinawa Island.
- Published
- 2008
20. Ecological Studies on Subtropical Evergreen Broad-leaved Forest in Okinawa, Japan: Litter Production and Nutrient Input
- Author
-
Eiji Hirata, Tsutomu Enoki, Yoshihiro Tokashiki, Xiaoniu Xu, and Kangoro Nogami
- Subjects
0106 biological sciences ,Ecology ,Castanopsis sieboldii ,Forestry ,Subtropics ,Biology ,Plant litter ,Evergreen ,010603 evolutionary biology ,01 natural sciences ,Basal area ,Nutrient ,visual_art ,visual_art.visual_art_medium ,Litter ,Bark ,010606 plant biology & botany - Abstract
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.
- Published
- 2000
21. Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability
- Author
-
Goro Iwatsubo, Tsutomu Enoki, and Hideyuki Kawaguchi
- Subjects
0106 biological sciences ,biology ,Soil nutrients ,Phosphorus ,PARL ,chemistry.chemical_element ,Plant litter ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Nitrogen ,Pinus thunbergii ,Topographic gradient ,Nutrient ,chemistry ,Agronomy ,Environmental science ,Ecology, Evolution, Behavior and Systematics ,010606 plant biology & botany - Abstract
To examine responses of a plant species to nutrient availability, we investigated changes in soil nutrient availability, litterfall production and nutrient content in litterfall along a topographic gradient in aPinus thunbergii Parl. plantation. Responses were evaluated in terms of three efficiency indices: (i) nutrient-uptake efficiency (the ratio of nutrient return in litterfall to soil nutrient availability); (ii) nutrient-use efficiency (the ratio of litterfall mass to nutrient return in litterfall); and (iii) nutrient-response efficiency (the ratio of litterfall mass to soil nutrient availability). These indices can distinguish the ability of a species to acquire nutrients and its ability to use them in litterfall production. Nitrogen and phosphorus availabilities in soil were lower in upper slope positions. The three efficiencies were higher in upper slope positions and negatively correlated with soil nutrient availability for both nitrogen and phosphorus. An increase in nutrient-response efficiency was achieved by both increases in nutrient-uptake and nutrient-use efficiencies.
- Published
- 1997
22. Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation
- Author
-
Tsutomu Enoki, Goro Iwatsubo, and Hideyuki Kawaguchi
- Subjects
0106 biological sciences ,Total organic carbon ,chemistry.chemical_classification ,Forest floor ,Biomass (ecology) ,biology ,Soil science ,biology.organism_classification ,010603 evolutionary biology ,01 natural sciences ,Spatial heterogeneity ,Nutrient ,Pinus thunbergii ,chemistry ,Volume (thermodynamics) ,Environmental science ,Organic matter ,Ecology, Evolution, Behavior and Systematics ,010606 plant biology & botany - Abstract
Soil properties and above-and belowground forest structure were studied across various topographies in a 20-year-oldPinus thunbergii Parl. plantation on Mt Tanakami, Japan. The soil properties and stand structure varied greatly with slope position fromridge top to valley floor. Soil thickness, fine soil content and soil moisture content were greater in lower slope positions. The amount of organic carbon in the forest floor was greater in upper slope positions. The organic carbon content in the mineral soil was slightly greater in lower slope positions. These changes in soil properties suggested an upslope decrease in decomposition rate and water and/or nutrient availability. The aboveground structure ofP. thunbergii was more developed at lower slope positions. The mean stem diameter, height and volume ofP. thunbergii increased downslope with decreasing tree density. However, fine root biomass increased greatly upslope. This inverse relationship between tree height and fine root biomass indicated morphological plasticity ofP. thunbergii in exploiting environmental heterogeneity. Variations in soil-plant interactions in the stand along various topographies caused spatial heterogeneity in the accumulation pattern of organic matter in plants and the soil.
- Published
- 1996
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.