1. Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-Energy Emission from Prompt to Afterglow
- Author
-
M. Ajello, M. Arimoto, M. Axelsson, L. Baldini, G. Barbiellini, D. Bastieri, R. Bellazzini, A. Berretta, E. Bissaldi, R. D. Blandford, R. Bonino, E. Bottacini, J. Bregeon, P. Bruel, R. Buehler, E. Burns, S. Buson, R. A. Cameron, R. Caputo, P. A. Caraveo, E. Cavazzuti, S. Chen, G. Chiaro, S. Ciprini, J. Cohen-Tanugi, D. Costantin, S. Cutini, F. D’Ammando, M. DeKlotz, P. de la Torre Luque, F. de Palma, A. Desai, N. Di Lalla, L. Di Venere, F. Fana Dirirsa, S. J. Fegan, A. Franckowiak, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Giglietto, R. Gill, F. Giordano, M. Giroletti, J. Granot, D. Green, I. A. Grenier, M.-H. Grondin, S. Guiriec, E. Hays, D. Horan, G. Jóhannesson, D. Kocevski, M. Kovac’evic’, M. Kuss, S. Larsson, L. Latronico, M. Lemoine-Goumard, J. Li, I. Liodakis, F. Longo, F. Loparco, M. N. Lovellette, P. Lubrano, S. Maldera, D. Malyshev, A. Manfreda, G. Martí-Devesa, M. N. Mazziotta, J. E. McEnery, I. Mereu, M. Meyer, P. F. Michelson, W. Mitthumsiri, T. Mizuno, M. E. Monzani, E. Moretti, A. Morselli, I. V. Moskalenko, M. Negro, E. Nuss, N. Omodei, M. Orienti, E. Orlando, M. Palatiello, V. S. Paliya, D. Paneque, Z. Pei, M. Persic, M. Pesce-Rollins, V. Petrosian, F. Piron, H. Poon, T. A. Porter, G. Principe, J. L. Racusin, S. Rainò, R. Rando, B. Rani, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, F. Ryde, P. M. Saz Parkinson, D. Serini, C. Sgrò, E. J. Siskind, G. Spandre, P. Spinelli, H. Tajima, K. Takagi, M. N. Takahashi, D. Tak, J. B. Thayer, D. J. Thompson, D. F. Torres, E. Troja, J. Valverde, B. Van Klaveren, K. Wood, M. Yassine, G. Zaharijas, B. Mailyan, P. N. Bhat, M. S. Briggs, W. Cleveland, M. Giles, A. Goldstein, M. Hui, Christian Malacaria, R. Preece, O. J. Roberts, P. Veres, C. Wilson-Hodge, A. von Kienlin, S. B. Cenko, P. O’Brien, A. P. Beardmore, A. Lien, J. P. Osborne, A. Tohuvavohu, V. D’Elia, A. D’Aì, M. Perri, J. Gropp, N. Klingler, M. Capalbi, G. Tagliaferri, M. Stamatikos, M. De Pasquale, Ajello, M., Arimoto, M., Axelsson, M., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Berretta, A., Bissaldi, E., Blandford, R. D., Bonino, R., Bottacini, E., Bregeon, J., Bruel, P., Buehler, R., Burns, E., Buson, S., Cameron, R. A., Caputo, R., Caraveo, P. A., Cavazzuti, E., Chen, S., Chiaro, G., Ciprini, S., Cohen-Tanugi, J., Costantin, D., Cutini, S., D’Ammando, F., Deklotz, M., de la Torre Luque, P., de Palma, F., Desai, A., Di Lalla, N., Di Venere, L., Fana Dirirsa, F., Fegan, S. J., Franckowiak, A., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Gill, R., Giordano, F., Giroletti, M., Granot, J., Green, D., Grenier, I. A., Grondin, M. -H., Guiriec, S., Hays, E., Horan, D., Jóhannesson, G., Kocevski, D., Kovac’Evic’, M., Kuss, M., Larsson, S., Latronico, L., Lemoine-Goumard, M., Li, J., Liodakis, I., Longo, F., Loparco, F., Lovellette, M. N., Lubrano, P., Maldera, S., Malyshev, D., Manfreda, A., Martí-Devesa, G., Mazziotta, M. N., Mcenery, J. E., Mereu, I., Meyer, M., Michelson, P. F., Mitthumsiri, W., Mizuno, T., Monzani, M. E., Moretti, E., Morselli, A., Moskalenko, I. V., Negro, M., Nuss, E., Omodei, N., Orienti, M., Orlando, E., Palatiello, M., Paliya, V. S., Paneque, D., Pei, Z., Persic, M., Pesce-Rollins, M., Petrosian, V., Piron, F., Poon, H., Porter, T. A., Principe, G., Racusin, J. L., Rainò, S., Rando, R., Rani, B., Razzano, M., Razzaque, S., Reimer, A., Reimer, O., Ryde, F., Saz Parkinson, P. M., Serini, D., Sgrò, C., Siskind, E. J., Spandre, G., Spinelli, P., Tajima, H., Takagi, K., Takahashi, M. N., Tak, D., Thayer, J. B., Thompson, D. J., Torres, D. F., Troja, E., Valverde, J., Van Klaveren, B., Wood, K., Yassine, M., Zaharijas, G., Mailyan, B., Bhat, P. N., Briggs, M. S., Cleveland, W., Giles, M., Goldstein, A., Hui, M., Malacaria, Christian, Preece, R., Roberts, O. J., Veres, P., Wilson-Hodge, C., von Kienlin, A., Cenko, S. B., O’Brien, P., Beardmore, A. P., Lien, A., Osborne, J. P., Tohuvavohu, A., D’Elia, V., D’Aì, A., Perri, M., Gropp, J., Klingler, N., Capalbi, M., Tagliaferri, G., Stamatikos, M., De Pasquale, M., D'Ammando, F., Torre Luque, P. D. L., Palma, F. D., Lalla, N. D., Venere, L. D., Johannesson, G., Kovac'Evic', M., Marti-Devesa, G., Rain, S., Sgr, C., Klaveren, B. V., Malacaria, C., Kienlin, A. V., O'Brien, P., D'Elia, V., D'A, A., Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), National Aeronautics and Space Administration (US), Department of Energy (US), Commissariat à l'Ènergie Atomique et aux Ènergies Alternatives (France), Centre National de la Recherche Scientifique (France), Institut National de Physique Nucléaire et de Physique des Particules (France), Agenzia Spaziale Italiana, Istituto Nazionale di Fisica Nucleare, Ministry of Education, Culture, Sports, Science and Technology (Japan), High Energy Accelerator Research Organization (Japan), Japan Aerospace Exploration Agency, Knut and Alice Wallenberg Foundation, Swedish Research Council, Swedish National Space Board, Istituto Nazionale di Astrofisica, German Research Foundation, Israel Science Foundation, Japan Society for the Promotion of Science, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Raunvísindastofnun (HÍ), Science Institute (UI), Verkfræði- og náttúruvísindasvið (HÍ), School of Engineering and Natural Sciences (UI), Háskóli Íslands, and University of Iceland
- Subjects
Sjónaukar ,Photon ,010504 meteorology & atmospheric sciences ,Gammageislar ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Neil Gehrels Swift Observatory ,Photon energy ,01 natural sciences ,law.invention ,Fermi Gamma-ray Space Telescope ,law ,0103 physical sciences ,Fysik ,Astrophysics - High Energy Astrophysical Phenomena ,Gamma-ray bursts ,ddc:530 ,Gamma-ray burst ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Range (particle radiation) ,Computer Science::Information Retrieval ,Astronomy and Astrophysics ,Light curve ,Synchrotron ,Afterglow ,13. Climate action ,Space and Planetary Science ,Physical Sciences ,ddc:520 ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Stjörnuskoðun - Abstract
Publisher's version (útgefin grein), We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process., This work was performed in part under DOE Contract DE-AC02-76SF00515 and support by JSPS KAKENHI grant No. JP17H06362, the JSPS Leading Initiative for Excellent Young Researchers program, and Sakigake 2018 Project of Kanazawa University (M.A.).
- Published
- 2020