1. Nuclear Mass Measurements Map the Structure of Atomic Nuclei and Accreting Neutron Stars
- Author
-
B. A. Brown, Sherry Towers, David J. Morrissey, Hendrik Schatz, J. F. Carpino, John Yurkon, R. G. T. Zegers, Kathrin Wimmer, J. Stevens, Alfredo Estrade, M. Scott, H. Chung, J. R. Winkelbauer, W. Mittig, Sebastian George, Dan Shapira, Michael Famiano, Karl Smith, S. Ahn, J. Pereira, Milan Matos, J. Browne, Richard H. Cyburt, Zach Meisel, J. Schatz, Wanpeng Tan, Fernando Montes, D. Bazin, Oleg B. Tarasov, Alexandra Gade, and C. Langer
- Subjects
Physics ,Isotope ,Nuclear Theory ,010308 nuclear & particles physics ,Structure (category theory) ,FOS: Physical sciences ,Mass spectrometry ,01 natural sciences ,Nuclear Theory (nucl-th) ,Neutron star ,Superconducting cyclotron ,0103 physical sciences ,Atomic nucleus ,Nuclear Experiment (nucl-ex) ,Connection (algebraic framework) ,Atomic physics ,010306 general physics ,Nuclear theory ,Nuclear Experiment - Abstract
We present mass excesses (ME) of neutron-rich isotopes of Ar through Fe, obtained via TOF-$B\rho$ mass spectrometry at the National Superconducting Cyclotron Laboratory. Our new results have significantly reduced systematic uncertainties relative to a prior analysis, enabling the first determination of ME for $^{58,59}{\rm Ti}$, $^{62}{\rm V}$, $^{65}{\rm Cr}$, $^{67,68}{\rm Mn}$, and $^{69,70}{\rm Fe}$. Our results show the $N=34$ subshell weaken at Sc and vanish at Ti, along with the absence of an $N=40$ subshell at Mn. This leads to a cooler accreted neutron star crust, highlighting the connection between the structure of nuclei and neutron stars., Comment: Accepted for publication as a Rapid Communication in Physical Review C
- Published
- 2020