1. High-Resolution Mining of SARS-CoV-2 Main Protease Conformational Space: Supercomputer-Driven Unsupervised Adaptive Sampling
- Author
-
Pengyu Ren, Chengwen Liu, Louis Lagardère, Théo Jaffrelot Inizan, Dina El Ahdab, Frédéric Célerse, Luc-Henri Jolly, Matthieu Montes, Olivier Adjoua, Pierre Monmarché, Nathalie Lagarde, Jean-Philip Piquemal, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Parisien de Chimie Physique et Théorique (IP2CT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Biomedical Engineering [Austin], University of Texas at Austin [Austin], Laboratoire Génomique, bioinformatique et chimie moléculaire (GBCM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), European Project: 810367,EMC2(2019), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Adaptive sampling ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,SARS-COV-2 ,Protomer ,Molecular dynamics ,Polarizable force field AMOEBA ,01 natural sciences ,03 medical and health sciences ,0103 physical sciences ,Amoeba (mathematics) ,Cluster analysis ,030304 developmental biology ,Physics ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,010304 chemical physics ,biology ,Solvation ,COVID-19 ,Active site ,General Chemistry ,AMOEBA ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemistry ,main protease ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,biology.protein ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Oxyanion hole ,Biological system ,Mpro - Abstract
We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker-HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS-CoV-2 Main Protease (Mpro) producing more than 38 μs of all-atom simulations of its apo (ligand-free) dimer using the high-resolution AMOEBA PFF. The first 15.14 μs simulation (physiological pH) is compared to available non-PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, with AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 μs simulation was performed as a basis for comparison. Results highlight the plasticity of the Mpro active site. The C-terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal site volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 μs AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule count consistent with experimental data. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro., We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs).
- Published
- 2021
- Full Text
- View/download PDF