1. Structural Polymorphism in Na4Zn(PO4)2 Driven by Rotational Order–Disorder Transitions and the Impact of Heterovalent Substitutions on Na-Ion Conductivity
- Author
-
Vladimir Pomjakushin, François Fauth, Yaroslava Shakhova, Maria A. Kirsanova, Matthieu Courty, Artem M. Abakumov, Jean-Marie Tarascon, Sujoy Saha, Gwenaëlle Rousse, Chimie du solide et de l'énergie (CSE), Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), European Synchrotron Radiation Facility (ESRF), Paul Scherrer Institute (PSI), Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia., Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Advanced Lithium Energy Storage Systems - ALISTORE-ERI (ALISTORE-ERI), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Chemistry ,Cationic polymerization ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Electron ,Conductivity ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Crystallography ,Polymorphism (materials science) ,Vacancy defect ,Fast ion conductor ,Ionic conductivity ,Physical and Theoretical Chemistry ,Powder diffraction - Abstract
International audience; Solid electrolytes have regained tremendous interest recently in light of the exposed vulnerability of current rechargeable battery technologies. While designing solid electrolytes, most efforts concentrated on creating structural disorder (vacancies, interstitials, etc.) in a cationic Li/Na sublattice to increase ionic conductivity. In phosphates, the ionic conductivity can also be increased by rotational disorder in the anionic sublattice, via a paddle-wheel mechanism. Herein, we report on Na4Zn(PO4)(2) which is designed from Na3PO4, replacing Na+ with Zn2+ and introducing a vacancy for charge balance. We show that Na4Zn(PO4)(2) undergoes a series of structural transitions under temperature, which are associated with an increase in ionic conductivity by several orders of magnitude. Our detailed crystallographic study, combining electron, neutron, and X-ray powder diffraction, reveals that the room-temperature form, alpha-Na4Zn(PO4)(2), contains orientationally ordered PO4 groups, which undergo partial and full rotational disorder in the high-temperature beta- and gamma-polymorphs, respectively. We furthermore showed that the highly conducting gamma-polymorph could be stabilized at room temperature by ball-milling, whereas the beta-polymorph can be stabilized by partial substitution of Zn2+ with Ga2+ and Al3+. These findings emphasize the role of rotational disorder as an extra parameter to design new solid electrolytes.
- Published
- 2020