Ying-Ping Wang, Margaret S. Torn, Chris D. Jones, Changhui Peng, Jianyang Xia, Philippe Ciais, Victor Brovkin, Yaxing Wei, Tristram O. West, Matthew J. Smith, William R. Wieder, William J. Parton, Anders Ahlström, Carlos A. Sierra, James T. Randerson, Nuno Carvalhais, Hanqin Tian, Alejandro Salazar, Junyi Liang, Eric A. Davidson, Charles D. Koven, Robert B. Jackson, Steven D. Allison, Adien Finzi, Lifen Jiang, Yiqi Luo, Xia Xu, A. David McGuire, Kees Jan van Groenigen, Francesca M. Hopkins, Bertrand Guenet, Katerina Georgiou, Yujie He, Adrian Chappell, Xiaofeng Xu, Mark J. Lara, Niels H. Batjes, Oleksandra Hararuk, Tao Zhou, Jennifer W. Harden, Katherine Todd-Brown, University of Oklahoma (OU), Lund University [Lund], Department of Ecology and Evolutionary Biology [Irvine], University of California [Irvine] (UCI), University of California-University of California, World Soil Information (ISRIC), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Max Planck Society, Cardiff University, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), University of Maryland Center for Environmental Science (UMCES), University of Maryland System, Boston University [Boston] (BU), University of California [Berkeley], University of California, Modélisation des Surfaces et Interfaces Continentales (MOSAIC), University of British Columbia (UBC), United States Geological Survey [Reston] (USGS), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Department of Earth System Science [Stanford] (ESS), Stanford EARTH, Stanford University-Stanford University, University of Reading (UOR), Alaska Cooperative Fish and Wildlife Research Unit, United States Geological Survey [Reston] (USGS)-University of Alaska [Fairbanks] (UAF), Risø National Laboratory for Sustainable Energy (Risø DTU), Technical University of Denmark [Lyngby] (DTU), Université du Québec à Trois-Rivières (UQTR), Institut de Géographie, Pontifica Universidad Catolica de Chile, Max Planck Institute for Biogeochemistry (MPI-BGC), Shandong Agricultural University (SDAU), Department of Microbiology and Plant Biology, COACTIS (COACTIS), Université Lumière - Lyon 2 (UL2)-Université Jean Monnet [Saint-Étienne] (UJM), Chaire économie du climat, University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Pontificia Universidad Católica de Chile (UC), COnception de l'ACTIon en Situation (COACTIS), and Université Lumière - Lyon 2 (UL2)-Université Jean Monnet - Saint-Étienne (UJM)
©2015. American Geophysical Union. All Rights Reserved. Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.