Olivier Boucher, Rong Wang, Bjørn Hallvard Samset, Øivind Hodnebrog, Gunnar Myhre, Nick Schutgens, Cathrine Lund Myhre, Philip Stier, Yves Balkanski, Johannes Quaas, Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Fudan University [Shanghai], Earth and Climate, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
International audience; Peng et al. (1) conclude that a fast increase in the mass absorption cross-section (MAC) of black carbon (BC) in urban environments leads to significantly increased estimates of the BC radiative forcing (RF). Their chamber measurements are highly valuable and complement observations performed in ambient conditions, but their "enhancement factor" relative to an unspec-ified baseline may not be directly comparable to values used or simulated in global aerosol models. MAC, a key parameter in our understanding of the net BC climate impact, is indeed a more relevant quantity to examine. A fast MAC enhancement in polluted environments as the BC gets coated with organic and inorganic species is consistent with recent findings (2, 3). Global models used in AeroCom [table S1 in Peng et al. (1), ref. 4] have an average MAC of ∼8 m 2 ·g −1 at 550 nm. This value is reflecting reported measurements, although there is a large spatial and seasonal variability in ambient MAC for aged particles, with values of ∼10 m 2 ·g −1 at a rural Northern Chinese site (2) (at 678 nm); 6-14 m 2 ·g −1 at rural, urban, and high-altitude Indian locations (5) (at 678 nm); and ∼6 m 2 ·g −1 at an Arctic site (6) (at 522 nm). Coating of BC by soluble species not only enhances absorption of solar radiation but also reduces the BC atmospheric lifetime (7). Fig. 1 shows an offset between the increase in average MAC value with faster BC aging and an overall shorter BC lifetime, resulting in a near-constant BC aerosol absorption optical depth and RF with aging time. Furthermore, current global aerosol models frequently have a too long BC lifetime and consequently overestimate BC concentrations downwind from source regions (8). According to Peng et al. (1), their BC absorption enhancement factor of 2.4 is also an upper bound, only reached after 5 (Beijing) to 18 (Houston) h, and possibly longer in cleaner environments. Such timescales are not small compared with the BC atmospheric lifetime of 3-5 d, especially considering that dilution effects may lengthen the aging timescale in the real atmosphere compared with the static chamber measurements performed by Peng et al. It is unclear how representative these measurements are for global and annual averages, but we know that generalizations can introduce serious errors due to spatial and temporal sampling issues (9). This implies that a simple scaling of the BC RF by the absorption enhancement factor measured by Peng et al.-as performed by the authors in their table S1 and figure 4, and extended in the commentary (10)-is overly simplistic. In conclusion, although we welcome the advances made by Peng et al., their conclusion of a +0.45 [0.21-0.80] W·m −2 additional RF due to a large BC enhancement factor is premature. The jury is still out on the question of the net climate impact of BC and how much climate cobenefit will result from the necessary mitigation of BC emissions. Reducing the uncertainty on the BC forcing requires better constraining BC MAC and atmospheric lifetime in global aerosol models.