1. PTOPO
- Author
-
Fabrice Rouillier, Zafeirakis Zafeirakopoulos, Christina Katsamaki, Elias P. Tsigaridas, OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Gebze Teknik Üniversitesi [Gebze], FR, ET and ZZ are partially supported by Fondation Mathématique Jacques Hadamard PGMO grand ALMA, Agence Nationale de la Recherche ANR-17-CE40-0009, PHC GRAPE and by the projects118F321 under the program 2509, 118C240 under the program 2232, and 117F100 under the program 3501 of the Scientific and Technological Research Council of Turkey., ANR-17-CE40-0009,GALOP,Jeux à travers la lentille de algèbre et géométrie de l'optimisation(2017), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Maple ,Plane curve ,Computer science ,010102 general mathematics ,0102 computer and information sciences ,General Medicine ,Parameter space ,engineering.material ,Topology ,01 natural sciences ,010201 computation theory & mathematics ,engineering ,Graph (abstract data type) ,0101 mathematics ,Representation (mathematics) ,Parametric equation ,Topology (chemistry) ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,Parametric statistics - Abstract
International audience; PTOPO is a MAPLE package computing the topology and describing the geometry of a parametric plane curve. The algorithm behind PTOPO constructs an abstract graph that is isotopic to the curve. PTOPO exploits the benefits of the parametric representation and performs all computations in the parameter space using exact computing. PTOPO computes the topology and visualizes the curve in less than a second for most examples in the literature.
- Published
- 2020
- Full Text
- View/download PDF