1. Knotting fractional-order knots with the polarization state of light
- Author
-
Alessio Celi, Juan P. Torres, Antonio Picón, Gerard J. Machado, Maciej Lewenstein, Verónica Vicuña-Hernández, Emilio Pisanty, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, and Universitat Politècnica de Catalunya. FOTONICA - Grup de Recerca de Fotònica
- Subjects
Angular momentum ,Nonlinear optics ,Fotònica ,Polarització (Llum) ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Torus knot ,010309 optics ,Optical physics ,Singularity ,Quantum mechanics ,0103 physical sciences ,Light beam ,Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica [Àrees temàtiques de la UPC] ,Optical techniques ,Polarization (Light) ,Physics ,polarization ,Física [Àrees temàtiques de la UPC] ,Optical polarization ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Photonics ,Other photonics ,Gravitational singularity ,0210 nano-technology ,Physics - Optics ,Optics (physics.optics) - Abstract
The fundamental polarization singularities of monochromatic light are normally associated with invariance under coordinated rotations: symmetry operations that rotate the spatial dependence of an electromagnetic field by an angle $\theta$ and its polarization by a multiple $\gamma\theta$ of that angle. These symmetries are generated by mixed angular momenta of the form $J_\gamma = L + \gamma S$ and they generally induce M\"obius-strip topologies, with the coordination parameter $\gamma$ restricted to integer and half-integer values. In this work we construct beams of light that are invariant under coordinated rotations for arbitrary $\gamma$, by exploiting the higher internal symmetry of 'bicircular' superpositions of counter-rotating circularly polarized beams at different frequencies. We show that these beams have the topology of a torus knot, which reflects the subgroup generated by the torus-knot angular momentum $J_\gamma$, and we characterize the resulting optical polarization singularity using third-and higher-order field moment tensors, which we experimentally observe using nonlinear polarization tomography., Comment: Submitted Manuscript, including a subset of the figures from the published Supplementary Information
- Published
- 2019