4 results on '"Justin Reyes"'
Search Results
2. Multilevel model reduction for uncertainty quantification in computational vibro-acoustical dynamics
- Author
-
Justin Reyes, Christian Soize, Laurent Gagliardini, Christophe Desceliers, Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), PSA Peugeot Citroën (PSA), PSA Peugeot - Citroën (PSA), Soize, Christian, and Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,[SPI.MECA.VIBR] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
3. Vibroacoustic model's likelihood computation based on a statistical reduction of random FRF matrices
- Author
-
Christian Soize, Justin Reyes, Laurent Gagliardini, PSA Peugeot - Citroën (PSA), PSA Peugeot Citroën (PSA), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), and Soize, Christian
- Subjects
Frequency response ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Computer science ,Probability density function ,02 engineering and technology ,[SPI.MECA] Engineering Sciences [physics]/Mechanics [physics.med-ph] ,01 natural sciences ,Projection (linear algebra) ,Reduction (complexity) ,Matrix (mathematics) ,0203 mechanical engineering ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,0103 physical sciences ,010301 acoustics ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Probabilistic logic ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,Independent component analysis ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,020303 mechanical engineering & transports ,[SPI.MECA.VIBR] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,Algorithm ,Realization (probability) - Abstract
International audience; Improvement of vibroacoustic models prediction capabilities requires an adapted indicator to compare experimental measurements with the results of the computational model. When dealing with highly uncertain objects such as series production cars, a probabilistic approach is mandatory to be able to describe the dispersion of experimental results. Moreover, a probabilistic non-parametric model also account for modeling uncertainties and simplifications that are part of any engineering process. The proposed approach deals with Frequency Response Functions since FRFs are the common way to handle vibroacoustic models. When considering multiple input and outputpoints configuration, FRFs are frequency dependent complex matrices. Since the probabilistic modeling is available in current vibroacoustic software, collections of random realizations of the FRF matrix can be computed from the existing FE model. The model’s likelihood naturally appears as the probability of a measured quantity to be part of its model. It is a single number that can advantageously be used as an indicator of the model‘s relevance regarding measurements. A novel complex FRF matrix statistical reduction is proposed, allowing the model’s likelihood computation. This reduction relies on the separation of statistically independent components such that the probability of the whole is the product of the probability of the components. The reduction is performed by a two stage Independent Component Analysis, first along the frequencies and second on frequency independent complex matrices. For each of the components, the joint probability density function of the complex coefficient is constructed from the various realization of the considered FRF matrix. The projection of any experimental or computed matrix on the components basis provides the complex coefficients which probabilities are known. The product of the componentprobabilities is the model’s likelihood. The proposed approach is applied to a mid-size vehicle body.
- Published
- 2019
- Full Text
- View/download PDF
4. Réduction de modèle multi-niveau pour la quantification de l’incertitude dans le cas de la dynamique vibroacoustique
- Author
-
Justin Reyes, Christophe Desceliers, Christian Soize, Laurent Gagliardini, Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), PSA Peugeot - Citroën (PSA), PSA Peugeot Citroën (PSA), Soize, Christian, and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,[SPI.MECA.VIBR] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,[SPI.MECA] Engineering Sciences [physics]/Mechanics [physics.med-ph] ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Abstract
National audience; Dans un contexte probabiliste, l’amélioration des capacités de prédiction des modèles vibroacoustiques nécessite un indicateur adapté pour comparer les mesures avec les prédictions. La comparaison est faite en utilisant la vraisemblance, dès qu’elle peut être estimée pour un résultat donné. L’analyse repose principalement sur des fonctions de réponse en fréquence complexes à valeurs matricielles qui peuvent être mesurées et calculées. Une réduction statistique est proposée. Cette réduction statistique présente en plus de la réduction des données, une analyse du comportement physique du système étudié.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.