1. Effective degradation of organophosphate ester flame retardants and plasticizers in coastal sediments under high urban pressure
- Author
-
Castro-Jimenez, Javier, Cuny, Philippe, Militon, Cécile, Sylvi, Lea, Royer, F, Papillon, L, Sempere, Richard, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut méditerranéen d'océanologie (MIO), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Multidisciplinary ,Biodegradation, Environmental ,Plasticizers ,[SDE]Environmental Sciences ,Esters ,Organophosphates ,Flame Retardants - Abstract
Empirical evidence of the effective degradation at environmentally relevant conditions of organophosphate esters (OPEs) flame retardants and plasticizers in coastal sediments from an impacted area in the NW Mediterranean Sea is provided. Half-lives varied from 23.3 to 77.0 (abiotic conditions) and from 16.8 to 46.8 days (biotic conditions), depending on the compound, highlighting the relevant role of microbial assemblages enhancing OPE degradation. After an immediate significant reduction of the bacterial abundance due to OPE addition to the sediment at the very beginning of the experiment, the observed biodegradation was associated to a general stimulation of the growth of the bacterial community during a first period, but without a marked change of the structure of the community. However, OPE contamination induced a decrease on the diversity of the bacterial community in the coastal sediment, noticeable after 14 days of incubation. It is likely that on one side the contamination had favoured the growth of some bacterial groups maybe involved in the biodegradation of these compounds but, on the other side, had also impacted some sensitive bacteria. The estimated half-lives fill a data gap concerning OPE degradation rates in marine sediments and will be valuable data for the refinement of OPE chemical risk assessment in marine environments, particularly on impacted sites.
- Published
- 2022
- Full Text
- View/download PDF