1. Spectroscopy of $^{98}\mathrm{Cd}$ by two-nucleon removal from $^{100}\mathrm{In}$
- Author
-
Jin, S. Y., Wang, S. T., Lee, J., Corsi, A., Wimmer, K., Browne, F., Chen, S., Cortés, M. L., Doornenbal, P., Koiwai, T., Yuan, C. X., Algora, A., Brugnara, D., Cederkäll, J., Gerl, J., Górska, M., Häfner, G., Kokubun, K., Koseoglou, P., Kubono, S., Li, P., Liang, P., Liu, J., Liu, Z., Lokotko, T., Park, J., Sakurai, H., Sarmiento, L. G., Sun, Z. Y., Taniuchi, R., Xian, W., Zanon, I., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] - Abstract
International audience; Low-lying states of Cd98 have been populated by the two-nucleon removal reaction (In100,Cd98+γ) and studied using in-beam γ-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new γ transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a π1g9/2−12p1/2−1 configuration with Jπ=5−. The present observation extends the systematics of the excitation energies of the first 5− state in N=50 isotones toward Sn100. The determined energy of the 5− state in Cd98 continues a smooth trend along the N=50 isotones. The systematics are compared with shell-model calculations in different model spaces. Good agreement is achieved when considering a model space consisting of the π(1f5/2, 2p3/2, 2p1/2, 1g9/2) orbitals. The calculations with a smaller model space omitting the orbitals below the Z=38 subshell could not reproduce the experimental energy difference between the ground and first 5− states in N=50 isotones, because proton excitations across Z=38 subshell yield a large amount of correlation energy that lowers the ground states.
- Published
- 2021
- Full Text
- View/download PDF