Thibaut Divoux, Marc-Antoine Fardin, Sandra Lerouge, Nicolas Louvet, Hugues Bodiguel, Sébastien Manneville, Julien Beaumont, Annie Colin, Laboratoire du Futur (LOF), Université Sciences et Technologies - Bordeaux 1-RHODIA-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC (UMR_7057)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université Sciences et Technologies - Bordeaux 1-RHODIA-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Université Sciences et Technologies - Bordeaux 1 (UB)-RHODIA-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Matière et Systèmes Complexes (MSC)
This work reports on an experimental study of elastic turbulence in a semi-dilute wormlike micelle system made of a highly elastic betaine surfactant solution. The temporal evolution of both rheological quantities and local flow properties is monitored by combining global rheology, optical visualization, and ultrasonic velocimetry. Even at the smallest applied shear rates or shear stresses, we find that the micellar sample develops large Weissenberg (Wi) numbers, leading the flow to undergo a transition to elastic turbulence. Three-dimensional flows are indeed observed all along the flow curve, which therefore cannot be interpreted in the framework of classical shear banding. Strong fluctuations are also recorded in the rheological quantities, in the reflected light intensity, and in velocity profiles. We show that the power spectral densities (PSDs) of these fluctuations display power law behaviours with exponents ranging from −1 to −3 depending on the applied shear stress or shear rate. The exponents inferred from local velocity measurements are found to be spatially dependent, pointing to inhomogeneous turbulence. The nature of the instability and of the transition to elastic turbulence is further discussed in light of recent experimental and theoretical works on wormlike micelles and polymers.