1. Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility
- Author
-
PERTHAME, BENOÎT, POULAIN, ALEXANDRE, Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Modelling and Analysis for Medical and Biological Applications (MAMBA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), The authors have received funding from the European Research Council (ERC) under the European Union’s Horizon2020 research and innovation programme (grant agreement No 740623), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Asymptotic analysis ,Relaxation method ,01 natural sciences ,Mathematics - Analysis of PDEs ,Singularity ,Relaxation system ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[MATH]Mathematics [math] ,0101 mathematics ,Cahn–Hilliard equation ,Physics ,35B40, 35G20, 35Q92, 92C10 ,Computer simulation ,Applied Mathematics ,010102 general mathematics ,Degenerate energy levels ,Second order equation ,Limiting ,Degenerate Cahn-Hilliard equation ,2010 Mathematics Subject Classification: 35B40 ,35G20 ,35Q92 ,92C10 ,010101 applied mathematics ,Classical mechanics ,Mathematical biology ,Living tissues ,Analysis of PDEs (math.AP) - Abstract
The degenerate Cahn–Hilliard equation is a standard model to describe living tissues. It takes into account cell populations undergoing short-range attraction and long-range repulsion effects. In this framework, we consider the usual Cahn–Hilliard equation with a singular single-well potential and degenerate mobility. These degeneracy and singularity induce numerous difficulties, in particular for its numerical simulation. To overcome these issues, we propose a relaxation system formed of two second-order equations which can be solved with standard packages. This system is endowed with an energy and an entropy structure compatible with the limiting equation. Here, we study the theoretical properties of this system: global existence and convergence of the relaxed system to the degenerate Cahn–Hilliard equation. We also study the long-time asymptotics which interest relies on the numerous possible steady states with given mass.
- Published
- 2020
- Full Text
- View/download PDF