1. From Newton's second law to Euler's equations of perfect fluids
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
- Subjects
General Mathematics ,FOS: Physical sciences ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Fluid dynamics ,Coulomb ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Physics ,Heuristic ,Applied Mathematics ,010102 general mathematics ,Dynamics (mechanics) ,Mathematical Physics (math-ph) ,010101 applied mathematics ,Classical mechanics ,Energy method ,Euler's formula ,symbols ,Analysis of PDEs (math.AP) - Abstract
Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty., Minor typos corrected
- Published
- 2021
- Full Text
- View/download PDF