1. Measuring Clusters of Labels in an Embedding Space to Refine Relations in Ontology Alignment
- Author
-
Catherine Faron, Molka Tounsi Dhouib, Andrea G. B. Tettamanzi, Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019), Université Nice Sophia Antipolis (1965 - 2019) (UNS), and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
- Subjects
Information retrieval ,Word embedding ,Computer Networks and Communications ,Computer science ,Context (language use) ,02 engineering and technology ,Measure (mathematics) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Metadata ,Set (abstract data type) ,Ontology Alignment ,Artificial Intelligence ,020204 information systems ,Word Embedding ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,0202 electrical engineering, electronic engineering, information engineering ,Embedding ,020201 artificial intelligence & image processing ,Semantic Web ,Ontology alignment ,Semantic web ,Information Systems - Abstract
International audience; Ontology alignment plays a key role in the management of heterogeneous data sources and metadata. In this context, various ontology alignment techniques have been proposed to discover correspondences between the entities of different ontologies. This paper proposes a new ontology alignment approach based on a set of rules exploiting the embedding space and measuring clusters of labels to discover the relationship between entities. We tested our system on the OAEI conference complex alignment benchmark track and then applied it to aligning ontologies in a real-world case study. The experimental results show that the combination of word embedding and a measure of dispersion of the clusters of labels, which we call the radius measure, makes it possible to determine, with good accuracy, not only equivalence relations, but also hierarchical relations between entities.
- Published
- 2021
- Full Text
- View/download PDF