1. Joint Latency-Energy Minimization for Fog-Assisted Wireless IoT Networks
- Author
-
Farshad Shams, Vincenzo Lottici, and Zhi Tian
- Subjects
Bi-objective optimization ,fog-assisted networks ,IoT ,joint resource allocation ,NBS ,Pareto boundary ,Telecommunication ,TK5101-6720 ,Transportation and communications ,HE1-9990 - Abstract
This work aims to present a joint resource allocation method for a fog-assisted network wherein IoT wireless devices simultaneously offload their tasks to a serving fog node. The main contribution is to formulate joint minimization of service latency and energy consumption objectives subject to both radio and computing constraints. Moreover, unlike previous works that set a fixed value to the circuit power dissipated to operate a wireless device, practical models are considered. To derive the Pareto boundary between two conflicting objectives we consider, Tchebyshev theorem is used for each wireless device. The interactions among IoT devices are represented through a cooperative Nash bargaining framework, with the unique Nash equilibrium (NE) being computed via a block coordinate descent method. Numerical results obtained using realistic models are presented to corroborate the effectiveness of the proposed algorithm.
- Published
- 2025
- Full Text
- View/download PDF