10 results on '"Yong-Zhi Shan"'
Search Results
2. Centromedian-parafascicular complex deep brain stimulation improves motor symptoms in rapid onset Dystonia‐Parkinsonism (DYT12-ATP1A3)
- Author
-
Kai-Liang Wang, Ji-Ping Li, Yong-Zhi Shan, Guo-Guang Zhao, Jing-Hong Ma, Adolfo Ramirez-Zamora, and Yu-Qing Zhang
- Subjects
Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Published
- 2023
- Full Text
- View/download PDF
3. Stereotactic EEG-guided radiofrequency thermocoagulation versus anterior temporal lobectomy for mesial temporal lobe epilepsy with hippocampal sclerosis: study protocol for a randomised controlled trial
- Author
-
Yi-He Wang, Si-Chang Chen, Peng-Hu Wei, Kun Yang, Xiao-Tong Fan, Fei Meng, Jia-Lin Du, Lian-Kun Ren, Yong-Zhi Shan, and Guo-Guang Zhao
- Subjects
Mesial temporal lobe epilepsy ,Stereotatic electroencephalograph (SEEG)-guided radiofrequency thermocoagulation (RF-TC) ,Randomised controlled trial ,Medicine (General) ,R5-920 - Abstract
Abstract Introduction In this report, we aim to describe the design for the randomised controlled trial of Stereotactic electroencephalogram (EEG)-guided Radiofrequency Thermocoagulation versus Anterior Temporal Lobectomy for Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (STARTS). Mesial temporal lobe epilepsy (mTLE) is a classical subtype of temporal lobe epilepsy that often requires surgical intervention. Although anterior temporal lobectomy (ATL) remains the most popular treatment for mTLE, accumulating evidence has indicated that ATL can cause tetartanopia and memory impairments. Stereotactic EEG (SEEG)-guided radiofrequency thermocoagulation (RF-TC) is a non-invasive alternative associated with lower seizure freedom but greater preservation of neurological function. In the present study, we aim to compare the safety and efficacy of SEEG-guided RF-TC and classical ATL in the treatment of mTLE. Methods and analysis STARTS is a single-centre, two-arm, randomised controlled, parallel-group clinical trial. The study includes patients with typical mTLE over the age of 14 who have drug-resistant seizures for at least 2 years and have been determined via detailed evaluation to be surgical candidates prior to randomisation. The primary outcome measure is the cognitive function at the 1-year follow-up after treatment. Seizure outcomes, visual field abnormalities after surgery, quality of life, ancillary outcomes, and adverse events will also be evaluated at 1-year follow-up as secondary outcomes. Discussion SEEG-guided RF-TC for mTLE remains a controversial seizure outcome but has the advantage for cognitive and visual field protection. This is the first RCT studying cognitive outcomes and treatment results between SEEG-guided RF-TC and standard ATL for mTLE with hippocampal sclerosis. This study may provide higher levels of clinical evidence for the treatment of mTLE. Trial registration ClinicalTrials.gov NCT03941613 . Registered on May 8, 2019. The STARTS protocol has been registered on the US National Institutes of Health. The status of the STARTS was recruiting and the estimated study completion date was December 31, 2021.
- Published
- 2021
- Full Text
- View/download PDF
4. Automatic labeling of the fanning and curving shape of Meyer’s loop for epilepsy surgery: an atlas extracted from high-definition fiber tractography
- Author
-
Yong-Zhi Shan, Zhen-Ming Wang, Xiao-Tong Fan, Hua-Qiang Zhang, Lian-Kun Ren, Peng-Hu Wei, and Guo-Guang Zhao
- Subjects
Human connectome project ,Medial temporal lobe epilepsy ,Meyer’s loop ,Anterior temporal lobe resection ,Diffusion spectrum imaging ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract Background Visual field defects caused by injury to Meyer’s loop (ML) are common in patients undergoing anterior temporal lobectomy during epilepsy surgery. Evaluation of the anatomical shapes of the curving, fanning and sharp angles of ML to guide surgeries is important but still challenging for diffusion tensor imaging. We present an advanced diffusion data-based ML atlas and labeling protocol to reproduce anatomical features in individuals within a short time. Methods Thirty Massachusetts General Hospital-Human Connectome Project (MGH-HCP) diffusion datasets (ultra-high magnetic gradient & 512 directions) were warped to standard space. The resulting fibers were projected together to create an atlas. The anatomical features and the tractography correspondence rates were evaluated in 30 MGH-HCP individuals and local diffusion spectrum imaging data (eight healthy subjects and six hippocampal sclerosis patients). Results In the atlas, features of curves, sharp angles and fanning shapes were adequately reproduced. The distances from the anterior tip of the temporal lobe to the anterior ridge of Meyer’s loop were 23.1 mm and 26.41 mm on the left and right sides, respectively. The upper and lower divisions of the ML were revealed to be twisting. Eighty-eight labeled sides were achieved, and the correspondence rates were 87.44% ± 6.92, 80.81 ± 10.62 and 72.83% ± 14.03% for MGH-HCP individuals, DSI-healthy individuals and DSI-patients, respectively. Conclusion Atlas-labeled ML is comparable to high angular resolution tractography in healthy or hippocampal sclerosis patients. Therefore, rapid identification of the ML location with a single modality of T1 is practical. This protocol would facilitate functional studies and visual field protection during neurosurgery.
- Published
- 2019
- Full Text
- View/download PDF
5. Functional Connectivity Alterations Based on Hypometabolic Region May Predict Clinical Prognosis of Temporal Lobe Epilepsy: A Simultaneous 18F-FDG PET/fMRI Study
- Author
-
Yi Shan, Hu-Cheng Zhou, Kun Shang, Bi-Xiao Cui, Xiao-Tong Fan, Qi Zhang, Yong-Zhi Shan, Jie-Hui Jiang, Guo-Guang Zhao, and Jie Lu
- Subjects
temporal lobe epilepsy ,simultaneous PET/MR ,hypometabolism ,functional connectivity ,clinical prognosis ,Biology (General) ,QH301-705.5 - Abstract
(1) Background: Accurate localization of the epileptogenic zone and understanding the related functional connectivity (FC) alterations are critical for the prediction of clinical prognosis in patients with temporal lobe epilepsy (TLE). We aim to localize the hypometabolic region in TLE patients, compare the differences in FC alterations based on hypometabolic region and structural lesion, respectively, and explore their relationships with clinical prognosis. (2) Methods: Thirty-two TLE patients and 26 controls were recruited. Patients underwent 18F-FDG PET/MR scan, surgical treatment, and a 2–3-year follow-up. Visual assessment and voxel-wise analyses were performed to identify hypometabolic regions. ROI-based FC analyses were performed. Relationships between clinical prognosis and FC values were performed by using Pearson correlation analyses and receiver operating characteristic (ROC) analysis. (3) Results: Hypometabolic regions in TLE patients were found in the ipsilateral hippocampus, parahippocampal gyrus, and temporal lobe (p < 0.001). Functional alterations based on hypometabolic regions showed a more extensive whole-brain FC reduction. FC values of these regions negatively correlated with epilepsy duration (p < 0.05), and the ROC curve of them showed significant accuracy in predicting postsurgical outcome. (4) Conclusions: In TLE patients, FC related with hypometabolic region obtained by PET/fMRI may provide value in the prediction of disease progression and seizure-free outcome.
- Published
- 2022
- Full Text
- View/download PDF
6. Glucose Metabolism Characteristics of Extra-Hypothalamic Cortex in Patients With Hypothalamic Hamartomas (HH) Undergoing Epilepsy Evaluation: A Retrospective Study of 16 Cases
- Author
-
Yan-Feng Yang, Peng-Hu Wei, Fei Meng, Yang An, Xiao-Tong Fan, Yi-He Wang, Di Wang, Lian-Kun Ren, Yong-Zhi Shan, and Guo-Guang Zhao
- Subjects
hypothalamic hamartomas ,epilepsy ,extra-hypothalamic cortex ,PET ,glucose metabolism ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Purpose: There are few studies on the glucose metabolic characteristics of the extra-hypothalamic cortex in the hypothalamic hamartomas (HH). A comprehensive understanding of pathogenic progression of the disease is required from the perspective of cortical metabolism; therefore, we aimed to characterize metabolic characteristics of extra-hypothalamic in HH patients.Methods: We investigated the metabolic characteristics of 16 HH patients, all of whom underwent epilepsy evaluation at Xuan Wu Hospital between 2017 and 2019. The lateralization and cortical distribution pattern of hypometabolism was assessed and related to HH mass neuroanatomy on magnetic resonance imaging (MRI) as well as scalp-electroencephalogram (scalp-EEG) abnormalities. Furthermore, asymmetry measurements of region of interest (ROI) in the temporal cortex (hippocampal formation, amygdala, and lateral temporal neocortex) were quantitatively assessed based on the normalized average positron emission tomography (PET) voxel values. The surgery prognosis was assessed using the International League Against Epilepsy (ILAE) classification system.Results: The lateralization of hypometabolism in global visual ratings was consistent with the HH mass lateralization seen on MRI. Cortical hypometabolism showed three patterns depending whether the HH mass involved mammillary bodies, middle hypothalamus nucleus, or both. The three patterns were hypometabolism of the mesial temporal cortex with symptom of mesial temporal epilepsy (3/16, pattern I), lateral temporal, and extratemporal (frontal or parietal) cortex with symptom of neocortex temporal or frontal epilepsy (5/16, pattern II), and mesial and lateral temporal cortex and extratemporal (frontal or parietal) cortex with varied symptoms (8/16, pattern III), respectively. A significant difference in PET voxel values was found between bilateral hippocampal formation (P = 0.001) and lateral temporal neocortex in the third group (P = 0.005). We suggest that the hypometabolic characteristics of the extra-hypothalamic cortex in HH patients have three patterns. The final cortical hypometabolic pattern depends on the neuroanatomic location of the HH mass and was consistent with the main involved cortex of the interictal and ictal discharges. The third hypometabolic pattern with the most extensive cortical hypometabolism has a poorer prognosis.
- Published
- 2021
- Full Text
- View/download PDF
7. Stereo-crossed ablation guided by stereoelectroencephalography for epilepsy: comprehensive coagulations a network of multi-electrodes
- Author
-
Peng-Hu Wei, Xiao-Tong Fan, Yi-He Wang, Chao Lu, Si-Qi Ou, Fei Meng, Mu-Yang Li, Hua-Qiang Zhang, Si-Chang Chen, Yang An, Yan-Feng Yang, Lian-Kun Ren, Yong-Zhi Shan, and Guo-Guang Zhao
- Subjects
Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Background: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This study aimed to quantify the configurations essential for scRF-TC. Methods: By using polyacrylamide gel (PAG), we investigated the effect of electrode conformation (angled/parallel/multiple edges) and electrode distance of creating an electrode network. Volume, time, and temperature were analyzed quantitatively with magnetic resonance imaging, video analysis, and machine learning. A network of electrodes to the pathological left area 47 was created in a patient; the seizure outcome and coverage range were further observed. Results: After the compatibility test between the PAG and brain tissue, the sufficient distance of contacts (from different electrodes) for confluent lesioning was 7 mm with the PAG. Connection to the lesioning field could be achieved even with a different arrangement of electrodes. One contact could achieve at least six connections with different peripheral contacts. Coagulation with a network of electrodes can create more significant lesioning sizes, 1.81–2.12 times those of the classic approaches. The confluent lesioning field created by scRF-TC had a volume of 38.7 cm 3 ; the low metabolic area was adequately covered. The representative patient was free of seizures throughout the 12-month follow up. Conclusion: Lesioning with electrodes in a network manner is practical for adequate 3D coverage. A secondary craniotomy could be potentially prevented by combining both monitoring and a large volume of lesions.
- Published
- 2020
- Full Text
- View/download PDF
8. Comparison between simultaneously acquired arterial spin labeling and 18F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG
- Author
-
Yi-He Wang, Yang An, Xiao-Tong Fan, Jie Lu, Lian-Kun Ren, Peng-Hu Wei, Bi-Xiao Cui, Jia-Lin Du, Chao Lu, Di Wang, Hua-Qiang Zhang, Yong-Zhi Shan, and Guo-Guang Zhao
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Objective: In the detection of seizure onset zones, arterial spin labeling (ASL) can overcome the limitations of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG), which is invasive, expensive, and radioactive. PET/magnetic resonance (MR) systems have been introduced that allow simultaneous performance of ASL and PET, but comparisons of these techniques with stereoelectroencephalography (SEEG) and comparisons among the treatment outcomes of these techniques are still lacking. Here, we investigate the effectiveness of ASL compared with that of SEEG and their outcomes in localizing mesial temporal lobe epilepsy (MTLE) and assess the correlation between simultaneously acquired PET and ASL. Methods: Between October 2016 and August 2017, we retrospectively studied 12 patients diagnosed with pure unilateral MTLE. We extracted and quantitatively computed values for ASL and PET in the bilateral hippocampus. SEEG findings and outcome were considered the gold standard of lateralization. Finally, the bilateral asymmetry index (AI) was calculated to assess the correlation between PET and ASL. Results: Our results showed that hypoperfusion in the hippocampus detected using ASL matched the SEEG-defined epileptogenic zone in this series of patients. The mean normalized voxel value of ASL in the contralateral hippocampus was 0.97 ± 0.19, while in the ipsilateral hippocampus, it was 0.84 ± 0.14. Meanwhile, significantly decreased perfusion and metabolism were observed in these patients (Wilcoxon, p
- Published
- 2018
- Full Text
- View/download PDF
9. Treatment and Outcome of Epileptogenic Temporal Cavernous Malformations
- Author
-
Yong-Zhi Shan, Xiao-Tong Fan, Liang Meng, Yang An, Jian-Kun Xu, and Guo-Guang Zhao
- Subjects
Cavernous Malformation ,Electrocorticogram ,Epilepsy ,Surgery ,Temporal Lobe ,Medicine - Abstract
Background: The aim of this study is to explore the treatment and outcome of epileptogenic temporal lobe cavernous malformations (CMs). Methods: We analyzed retrospectively the profiles of 52 patients diagnosed as temporal lobe CMs associated with epilepsy. Among the 52 cases, 11 underwent a direct resection of CM along with the adjacent zone of hemosiderin rim without electrocorticogram (ECoG) monitoring while the other 41 cases had operations under the guidance of ECoG. Forty-six patients were treated by lesionectomy + hemosiderin rim while the other six were treated by lesionectomy + hemosiderin rim along with extended epileptogenic zone resection. The locations of lesions, the duration of illness, the manifestation, the excision ranges and the outcomes of postoperative follow-up were analyzed, respectively. Results: All of the 52 patients were treated by microsurgery. There was no neurological deficit through the long-term follow-up. Outcomes of seizure control are as follows: 42 patients (80.8%) belong to Engel Class I, 5 patients (9.6%) belong to Engel Class II, 3 patients (5.8%) belong to Engel Class III and 2 patients (3.8%) belong to Engel Class IV. Conclusion: Patients with epilepsy caused by temporal CMs should be treated as early as possible. Resection of the lesion and the surrounding hemosiderin zone is necessary. Moreover, an extended excision of epileptogenic cortex or cerebral lobes is needed to achieve a better prognosis if the ECoG indicates the existence of an extra epilepsy onset origin outside the lesion itself.
- Published
- 2015
- Full Text
- View/download PDF
10. Stereo-crossed ablation guided by stereoelectroencephalography for epilepsy: comprehensive coagulations via a network of multi-electrodes.
- Author
-
Peng-Hu Wei, Xiao-Tong Fan, Yi-He Wang, Chao Lu, Si-Qi Ou, Fei Meng, Mu-Yang Li, Hua-Qiang Zhang, Si-Chang Chen, Yang An, Yan-Feng Yang, Lian-Kun Ren, Yong-Zhi Shan, and Guo-Guang Zhao
- Abstract
Background: Introducing multiple different stereoelectroencephalography electrodes in a three-dimensional (3D) network to create a 3D-lesioning field or stereo-crossed radiofrequency thermocoagulation (scRF-TC) might create larger lesioning size; however, this has not been quantified to date. This study aimed to quantify the configurations essential for scRF-TC. Methods: By using polyacrylamide gel (PAG), we investigated the effect of electrode conformation (angled/parallel/multiple edges) and electrode distance of creating an electrode network. Volume, time, and temperature were analyzed quantitatively with magnetic resonance imaging, video analysis, and machine learning. A network of electrodes to the pathological left area 47 was created in a patient; the seizure outcome and coverage range were further observed. Results: After the compatibility test between the PAG and brain tissue, the sufficient distance of contacts (from different electrodes) for confluent lesioning was 7mm with the PAG. Connection to the lesioning field could be achieved even with a different arrangement of electrodes. One contact could achieve at least six connections with different peripheral contacts. Coagulation with a network of electrodes can create more significant lesioning sizes, 1.81–2.12 times those of the classic approaches. The confluent lesioning field created by scRF-TC had a volume of 38.7cm³; the low metabolic area was adequately covered. The representative patient was free of seizures throughout the 12-month follow up. Conclusion: Lesioning with electrodes in a network manner is practical for adequate 3D coverage. A secondary craniotomy could be potentially prevented by combining both monitoring and a large volume of lesions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.