1. A Multimodal Hierarchial Approach to Robot Learning by Imitation
- Author
-
Weber, Cornelius, Elshaw, Mark, Zochios, Alex, Wermter, Stefan, Berthouze, Luc, Kozima, Hideki, Prince, Christopher G., Sandini, Giulio, Stojanov, Georgi, Metta, Giorgio, and Balkenius, Christian
- Subjects
Computer Science: Machine Learning ,Computer Science: Neural Nets ,Computer Science: Robotics ,Machine Learning ,Neural Nets ,Robotics - Abstract
In this paper we propose an approach to robot learning by imitation that uses the multimodal inputs of language, vision and motor. In our approach a student robot learns from a teacher robot how to perform three separate behaviours based on these inputs. We considered two neural architectures for performing this robot learning. First, a one-step hierarchial architecture trained with two different learning approaches either based on Kohonen's self-organising map or based on the Helmholtz machine turns out to be inefficient or not capable of performing differentiated behavior. In response we produced a hierarchial architecture that combines both learning approaches to overcome these problems. In doing so the proposed robot system models specific aspects of learning using concepts of the mirror neuron system (Rizzolatti and Arbib, 1998) with regards to demonstration learning.
- Published
- 2004